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ABSTRACT 
 
 
 

The first objective of this thesis is to investigate the effect of several forms of 

electronic attack (EA) on the radio frequency (RF) sensors used within a boost-phase bal-

listic missile intercept system. The EA types examined include noise jamming, chaff, ra-

dar cross section (RCS) reduction, and expendable decoys. Effects of the EA methods are 

evaluated by examining the track position error at the sensor fusion output. Sensor fusion 

architectures investigated include a weighted average sensor fusion, Kalman-filter-based 

sensor fusion, and joint probabilistic data fusion architecture. A second objective of this 

thesis is to extend the single-target, single-interceptor analysis and simulation to a multi-

target, multi-interceptor scenario to include the formation of an ellipsoidal gating process 

to correctly correlate the target measurements with the corresponding track file. We show 

that the most effective EA is the use of noise jamming followed by a RCS reduction of 

the missile body. We also show that a properly designed sensor fusion process can effec-

tively mitigate the EA techniques that might be used in a boost-phase intercept scenario. 
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I. INTRODUCTION  

A. BOOST-PHASE BALLISTIC MISSILE DEFENSE  
The U.S. effort to develop a non-nuclear anti-ballistic missile defense sys-
tem gained pace in the early 1990s, and by 1996, the program had become 
known as National Missile Defense (NDM). NMD consisted not only of 
the GBI interceptor missile, but also of new ground- and sea-based X-band 
radars (XBR), a battle management system (BMC3 - Battle Management 
Command, Control and Communications), new early warning radars 
(UEWR - Upgraded Early Warning Radars) and an interface to SBIRS 
(Space-Based Infrared System) satellites. At that time, it is planned to de-
velop a deployable system until 2000  [1].  

The ballistic missile defense system can be divided into three phases: boost-phase, 

midcourse, and terminal-phase. Figure  I-1 shows the three phases of the ballistic missile 

including, the countermeasures, or electronic attack (EA) deployment, for protection 

against ballistic missile defense systems. The boost phase lasts anywhere from 180 s to 

300 s, depending on the type of propellant used in the missile stages (solid or liquid). At 

the end of the boost phase, the warhead is propelled into space, where it enters the mid-

course phase. Multiple reentry vehicles (RVs) are launched, along with decoys, chaff, and 

other electronic attack methods to insure a successful flight through space. For the termi-

nal phase, the RVs reenter the atmosphere and proceed to the targeted areas. As is sug-

gested in  [2], the only evocative choice for ballistic missile defense is the “layered” ap-

proach, which intends to intercept the target missile at every possible trajectory phase. 
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Figure  I-1 Three phases of a ballistic missile attack (From  [3]). 
 

Defense against the terminal phase is difficult, since the defender has to cover all 

possible aim points. That is, each targeted area must have its own defense system, using 

multiple kill vehicles for threat interception. As was demonstrated in the Gulf War with 

the Patriot missile system, unless the interceptor destroys the warhead, the warhead will 

continue on its path, resulting in the kill of the target  [2]. 

Recently, most of the effort has been focused on intercepting the target in the 

midcourse phase. Midcourse interception is an easier task, since the trajectory and the 

speed of the target can be estimated accurately. There are, however, drawbacks for en-

gaging the missile in midcourse. These include the possible of intercept debris falling 

down and landing in friendly territories and the effective use of EA measures (decoys, 

chaff) to defeat the midcourse interceptors  [4]. 

For defense purposes, the most straightforward way of defeating a ballistic missile 

is to intercept it in the boost phase. Figure  I-2 shows a schematic of the possible subsys-

tems involved in a boost-phase defense system. The first step in boost-phase defense is 

detection of the missile launch by space-based infrared (IR) sensors (since the irradiance 

is high).  After the launch is detected, a number of forward-based radio frequency (RF) 

sensors can be used to discriminate and track the missile through the boost phase.  
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Figure  I-2 The subsystem of the boost-phase defense system 
 

As the IR and RF sensors continue tracking the target, the sensor information is 

transported over a data link to a fusion sub-system, which helps refine the estimate of the 

current and future position of the ballistic target. This refined target position is sent as 

guidance information to the interceptor, which is assumed to be a sea-based four-stage 

ballistic missile that carries a kill vehicle in its tip. The interceptor flies toward the target, 

using the guidance information from the sensors, and when in a position that is close 

enough to the target, launches the kill vehicle in an appropriate direction. After the kill 

vehicle is launched, it uses its own on-board sensors to navigate in an attempt to intercept 

and destroy the target. 

B. PRINCIPAL CONTRIBUTION 
This research investigates the effects of the ballistic missile’s EA on the RF sen-

sors within the boost-phase ballistic missile defense system architecture in a multi-target, 

multi-sensor scenario. Simulations were constructed in MATLAB® to model the various 

areas of investigation, including correlation, association, and fusion. Motion is simulated 

in three-dimensional, (3D), ECEF (Earth Centered, Earth Fixed) Cartesian coordinate 

system. 
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After the target and the interceptor ballistic missile are delineated, the effects of 

the EA and the method of mitigating them are explored. The methodology used in this 

study is a step-by-step approach. In each chapter, the simulation is enhanced to reach the 

final version. 

The single-target simulation from  [5] was recoded into functions and details add-

ing the use of electronic attack, state matrix formulation, and drag force. The EA effects 

on the RF sensors were then investigated quantitatively for a single-target situation. The 

types of EA used by the missile that were considered include: reductions in the radar 

cross section (RCS), chaff tactics, deceptive jamming, and expendable decoys. The ef-

fects of all EA methods were quantified as: a function of the sensor tracking quality, in-

terceptor guidance, and the miss distance between the interceptor and the target. To miti-

gate the EA affects, a new Kalman-filter-based sensor-fusion algorithm was investigated 

for the single-target scenario. 

A multi-target, multi-interceptor scenario was developed next. The joint probabil-

istic data association (JPDA) algorithm (a sub-optimal Bayesian algorithm) and an ellip-

soidal gating were included to fuse the sensor tracking results. The reduction in position 

error is shown for all types of EA considered. Target discrimination is also discussed.  

The boost-phase defense simulations were constructed around the following sce-

nario. Two ICBMs are launched from Kilju and Ok’pyong, North Korea, missile bases to 

hit San Francisco, California. The targets are tracked via sea-based RF sensors.  Position 

data for each target are transmitted to the fusion center with a fixed 10-ms transmission 

delay. The fusion center processes the information and estimates the targets’ positions. 

The estimated position information is used to control the guidance commands for the in-

terceptors. The interceptors are launched after a 35-s delay (modeling the command-and-

control decision time). The interceptors use proportional navigation (PN) guidance to es-

tablish collision geometry with the targets.  

Each interceptor flies until reaching an optimum position, or burn-out, and then 

launches its kill vehicle. The kill vehicles (one for each interceptor) and the types of on-

board sensors used to navigate to the target for interception  are discussed in Chapter IV. 

Kill vehicle simulation results are shown as a function of the commanded and achieved 
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acceleration, closure velocity between the kill vehicles and the targets, and the resulting 

miss distances. Also investigated are the differences between perfect tracking and Gaus-

sian error tracking. The simulation tools developed in this thesis are significant because 

they allow exploration of other scenarios that may be important; derivation of the optimal 

solution for each system parameter is also a significant result.  

C. THESIS OUTLINE 
Chapter II analyzes the effects of the EA on the RF sensor systems. First we ad-

dress the single-target scenario and the simulation in which this work began. Each EA 

type is investigated, and the method of deployment in an actual engagement is consid-

ered. The results are presented in terms of the tracking (position) error produced by the 

fusion center, command guidance, and the miss distance. 

Chapter III investigates the advanced fusion center algorithm to mitigate the ef-

fects of the EA. The Kalman filter and the Bayesian fusion are considered first. Then the 

system matrices for the Kalman filter are derived. Although the detailed derivations can 

be found in the related references, the key steps are shown. System noises are explained, 

and the Kalman algorithm is presented. The results are tested against the considered EA 

types. Finally, the Bayesian algorithm is analyzed, and the algorithm given in  [6] is used. 

Chapter IV considers the multi-target scenario and the kill vehicle. Target dis-

crimination, track initializing, correlation, and association are explained in detail. The 

evolution of the kill vehicle and current state-of-the-art exoatmospheric kill vehicles are 

discussed. The on-board sensor and the kill requirements are studied. Finally, the simula-

tion results are presented in terms of the tracking ability, produced guidance, closure ve-

locity, and the miss distance. 

Chapter V provides concluding remarks. 

Appendix A shows the flowchart of the final simulation. Appendix B is a com-

plete listing of the code. Appendix C gives the read-me files for maintenance of the simu-

lation. 
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II. ELECTRONIC ATTACK EFFECTS 

This chapter presents the effect of the EA on the RF sensors used within the Inter-

continental Ballistic Missile (ICBM) boost-phase intercept system.  The interception of 

an ICBM can be considered as a “sequence of successful tasks: detecting and classifying 

the threat missile, predicting the threat trajectory, discriminating the target from clutter 

and unlikely echoes, tracking the target, acquiring the target for interception, intercept, 

and kill assessment”  [2]. If one of these tasks is not successful, the intercept is in jeop-

ardy. The EAs used by the ICBM are intended to cause an intercept attempt to be unsuc-

cessful. The EA investigated in this thesis are listed in Table  II-1. 

Table  II-1 EAs That Can Degrade Defense Effectiveness 

Radar absorbing materials for reducing the radar cross section (RCS) of the target

Radar decoys to lure the radar tracking 

Coated glass fiber chaff for obscuring the target echo 

Deception jamming for forcing radar to lose the track 

 

A. PREVIOUS SCENARIO AND SIMULATION 
In this section, the scenario and the simulation described in  [5] and  [6] are re-

viewed. As described, an ICBM is launched from North Korea from Kilju Missile Base to 

hit San Francisco, California. The target is tracked via two ground-(actually sea)-based 

RF sensors and two space-based IR sensors.  The target position data are transmitted to 

the fusion center in an ECEF Cartesian coordinate system. The fusion center combines 

the position information and refines the target’s estimated position. Once a firing solution 

is obtained, the interceptor is launched toward the target ICBM. The estimated position 

information is sent to the interceptor via a communication link. The interceptor uses the 

information to derive the guidance force required for the intercept. The interceptor and 

the target ICBM establish the collision geometry conditional on the PN guidance rules. 

The interceptor flies until crossover with no kill vehicle being used. 
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To evaluate the scenario, a 3D ballistic-missile interception simulation was devel-

oped in  [5]. The dynamics of the ballistic missile and a 3D motion algorithm depend on 

total mass, propellant mass, and the specific impulse in the gravity field of a perfect-

sphere, non-rotating-earth is modeled  [5]. 

For the target ICBM, both  [5] and  [6] used a three-stage missile with the total 

mass and dimension of each stage being the same as the U.S. Peacekeeper missile, with 

85 percent of the total mass of each stage being the propellant mass. Each stage was as-

sumed to be using a fuel with a specific impulse of 300 s and a burnout time of 60 s. The 

total boost phase took three minutes. The target was assumed to be carrying a payload of 

5,000 lbs. 

For the interceptor ICBM, three generic models ware investigated, of which the 

third was the best. The interceptor was a three-stage missile, and the total mass and di-

mension of each stage also bears a resemblance to the U.S. Peacekeeper missile, but with 

95 percent of the total mass of each stage being the propellant mass. Each stage was as-

sumed to be using a fuel with a specific impulse of 300 s and a burnout time of 60 s. The 

total boost phase takes three minutes. This missile was assumed to be carrying a payload 

(kill vehicle) of 1,500 lbs (although the kill vehicle was never used). 

Both  [5] and  [6] also explored the specifications for the space-based IR sensors 

used to provide the initial launch detection. Detailed models of the missile plume signa-

ture were also examined. The IR sensors were designed to have a uniform error perform-

ance within their instantaneous field of view for tracking. The RCS of the target ICBM 

and definition of the RF sensor parameters (given in Table  II-3 in this work) were derived 

in  [5]; the error performance of the sensors was quantified depending on the target RCS 

value. 

B. TO BE SEEN OR NOT TO BE SEEN 
ICBM attack is considered to be detected via electronic systems, such as a space-

based electro-optics/IR systems or a ground- or air–based RF systems. Both of these sys-

tems work by using the target’s signatures, such as its minimum resolvable temperature 

difference or its RCS. The ICBM must reduce these signatures in order not to be seen or 

detected.  
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In this section, we deal with the RCS reduction to reduce the chance of being de-

tected by the radar.  

1. Radar Cross Section 
Radar performance is directly related to the RCS of a target in the radar range 

equation  [7] 

 
1

2 2 4

max 3
0 1

( )
 m

(4 ) ( / )
tt i

n n

PG nE n
R

kT B F S N
λ σ

π
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.1.1) 

where tP  is radiated power, tG is gain of the radar antenna, λ is wavelength, σ is RCS of 

the target, n is number of pulses in a train, ( )iE n is integration efficiency, 

231.38 10  J/degk −= × is Boltzmann’s constant, 0 290  KoT =  is standard temperature, nB is 

the bandwidth of the receiver, nF  is the noise factor, and 1( / )S N is the signal-to-noise 

ratio for a single pulse. 

The only parameter independent of the radar system is the RCS of the target. As 

shown in (2.1.1), the range can be halved when the RCS is decreased by 1/16th of its 

original value. The RCS can be defined as  [8]: 

 2Power Reflected to receiver per unit solid angle  m
Incident power density 4

σ
π

=   

In terms of the incident and scattered electric field intensities, and i sE E , 

 
2

2 2
2lim 4   ms

R
i

E
R

E
σ π

→∞
=  (2.1.2) 

where R is the range to the target.  The RCS is affected by the frequency and polarization 

of the incident field and the target aspect relative to the radar. Figure  II-1 shows the typi-

cal average values of the RCS. 
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Figure  II-1 Typical values of the RCS (After  [8]) 

The RCS of the three-stage generic ICBM target was predicted by  [5] by using 

POFACETS  [9]. The model of the generic missile is created by using triangular facets. 

For the target model, the parameter is taken from the US Peacekeeper missile because of 

its long-range capability and the availability of detailed open-source literature about the 

missile. The best frequency band is X-Band (10 GHz); that is optimum for the calculation 

 [10]. The RCS model was built using the original dimensions of the missile. It was as-

sumed to be constructed of aluminum and titanium alloy, which is heat resistant. The 

conductivity was assumed to be 2×107 S/m. The standard deviation of the surface rough-

ness was set to 0.3 mm. The model used in the program is shown in Figure  II-2. 
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Figure  II-2 Full-Scale Models of the missile at different Stages: (a) Stage 1, (b) 
Stage 2, (c) Stage 3, (d) Payload. (From  [5]) 

 
2. RCS Reduction 
When talking about the reduction of the RCS, four approaches can be considered 

 [8]: 1) target shaping, 2) passive cancellation, 3) active cancellation, and 4) materials se-

lection and coating. Each type has its advantages and trade-offs. 
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a. Shaping 

Generally, the shaping is considered to be the first and most important step 

to RCS reduction. Shaping changes the geometry of the platform so that the electromag-

netic waves do not reflect back to the source. The best example for this method is a plate 

having dimensions of  m  ma aλ λ× . Even if the normal physical area is the same, the 

diamond-shaped plate has a smaller specular RCS from the front aspect than a normal 

square plate. The shape controls the principal plane reflection, so the radar sees a reduced 

RCS from the front side. The Lockheed F-117A and Northrop B-2 have this kind of facet, 

which reduces their RCS from the principal aspect. Neither of these aircraft is supersonic. 

The trade-off for the use of shaping is reduced aerodynamic capabilities and increased 

cost.  

Reduction of the RCS cannot be done for the entire aspect angle of the 

platform because there will always be a viewing angle from which the radar can see the 

platform in normal incidence. Because we are considering an ICBM, the aerodynamic 

performance is very important. But that aspect of the ICBM is beyond the scope of this 

thesis, so we do not investigate it. 

b. Passive Cancellation 
This method is better known as impedance loading  [8]. It can be done by 

introducing a second reflector to cancel out the original one, by matching the amplitudes 

and phases. This process can be done for relatively simple platforms whose reflection 

properties are well known. However, the radar parameters of the target and its orientation 

also must be known well enough to apply this method. Although this method can be used 

to supplement any shaping as well, we cannot be sure about the aspect of our missile and 

thus this method also is not examined. 

c. Active Cancellation 

This method involves modifying and processing the received radar signal 

and then retransmitting it to cancel out the reflection  [8]. To do this, we need to know 

everything (angle of arrival, phase, pulsewidth, PRF, etc.) about the source radar. This is 

similar to active jamming techniques that use digital radio frequency memories (DRFMs) 

for storing and repeating the radar signal. This is a very challenging process; and because 

the demands in applying this method are always considerable, it is not practical for large 
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targets such as ICBMs. In some cases, knowledge of the target radar is not enough; the 

platform’s own RCS value should be known as well for all aspects.  

d. Material Selection and Coating (Radar Absorption Material) 

Using radar absorption material (RAM) is another way to reduce the RCS. 

The main purpose of this technique is to use material to cover the platform, in order to 

absorb or attenuate the incidence waves so that no, or few electromagnetic reflected 

waves are sent back to the radar. For this purpose, composite materials are commonly 

used.  

The amount of loss in the material is determined by the loss tangent 

(  and ε µδ δ ) of the material. The loss tangent is dependent on the imaginary part of the 

permittivity and the permeability  [11]. There are two theorems about the absorber.  

Theorem 1  [8]: “if a plane electromagnetic wave is incident on a body 

composed of material such that 0 (which states that )o r rµ µ ε ε µ ε= =  at each point, 

then the back scattered field is zero, provided that the incidence direction is parallel to an 

axis of the body about which a rotation of 90 deg leaves the shape of the body, together 

with its material medium invariant.”  

Theorem 2 states that “if a plane wave is incident on a body composed of 

a material such that the total field components satisfy the impedance boundary condition 

and if the surface is invariant under a 90 deg rotation, then the back scattered field is zero 

if the direction of the incidence is along the axis of symmetry and Zs = 1”  [8].   

Both theorems are derived from Maxwell’s equations. Now, we need to 

select the material that creates the smallest reflected waves.  

Composite absorbers are produced by using existing materials and varying 

their permittivity and permeability  [8]. Both of which are generally complex numbers. 

Common dielectric materials used for absorbers, such as foams, plastics, and elastomers, 

have no magnetic properties. Magnetic materials, such as ferrite, iron, and cobalt-nickel 

alloys, are used to alter the permeability of the materials. High dielectric materials, such 

as carbon, graphite, and metal flakes, are used to modify the dielectric properties  [11].  
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To apply the RAM, there are two primary approaches: the “Salisbury 

screen” and the “Dallenbach layer”. In this study, the Dallenbach layer is investigated, 

which allows us to construct a broadband canceller by applying multiple layers if neces-

sary. Before considering the material, several questions must be addressed to determine 

the material requirements. Questions to be addressed are  [11]: 

• Which frequency bands need to be covered?  

• Should coverage be applied for the entire band or for a specific frequency? 

• Is the RAM used to attenuate all reflections or just for traveling waves?  

• Will the RAM be used in a closed or open environment?  

• What kind of environmental force will affect the RAM: salt, water, ozone, 
oxygen, ultraviolet light, fuels, oils, chemicals, nuclear, stack gases, heat, 
etc.?  

• What mechanical stresses will be placed on the RAM: vibration, thermal 
shock, elongation, wind, etc.?  

• What is the expected lifetime of the RAM? 

When all these questions are answered, we will know the electrical and 

physical performance characteristics of material, which include its temperature, environ-

mental, and mechanical properties. In our case, the physical and the electrical perform-

ance are equally important. 

After answering the questions, we conclude that the material should work 

at X-band, especially 10 GHz. Note that intelligence information about the target radar is 

important here. We assume that the intelligence information about the interceptor radar is 

sufficient. Because the ICBM flies in the dense atmosphere for at least 100 km during the 

boost-phase, which approximately takes 120 s according to the previous simulation, we 

need a material that can resist the temperature caused by the drag of the air.  The layer 

must be as thin as possible to reduce extra weight that would cause degradation of the 

ICBM’s performance. The life expectancy of the layer is at most 4-5 minutes, depending 

on the missile boost-phase.  

Finally we may need a composite material containing titanium, ferrite, car-

bonyl iron, silicon rubber, and nickel to satisfy all these needs. Our backing material is an 

alloy of titanium and aluminum, which has an assumed conductivity of 2×107 S/m (rela-
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tive permeability and permittivity are 1). For 10 GHz, we can find the conductivity of the 

alloy  [12]. The intrinsic impedance of the medium is defined as 

 j
j

ωµη
σ ωε

=
+

 (2.1.3) 

where 2 fω π= , and σ  is conductivity, and and µ ε  are the permeability and the per-

mittivity of the medium, respectively. The intrinsic impedance of the medium is complex 

so long as the conductivity is not zero. The phase angle of the intrinsic impedance indi-

cates that the electric field and the magnetic field are out of phase. By applying wave 

equations to the material, we conclude that there are three types of material on the earth: 

perfect dielectric: 1σ ωε << , 

imperfect dielectric: 10 0.1σ
ωε

> > , and 

good Conductor: 1σ ωε >>  

where  
"

' ε
σ ε δ
ωε ε

= =  is the loss tangent of the medium, and " 'and ε ε are imaginary and 

real parts of the permittivity, respectively. By using the above properties, we find that 

7
7

9 12

2 10 3.6 10 1
2 10 10 8.854 10

σ
ωε π −

×
= = × >>

× × × × ×
 

Our alloy seems to be a very good conductor and can be accepted as a perfect electric 

conductor (PEC) for our study. Now we need to design a composite material over the 

PEC material for the reduction. 
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Figure  II-3 Specular Reflection (From  [13]). 

 

The reflection coefficient is the ratio between incident and the reflected 

electric field and is defined as 

 0

0

in
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Z Z
Z Z

−
Γ =

+
 (2.1.4) 

where 0Z is the characteristic impedance, and inZ  can be defined using transmission line 

equation shown in Figure  II-3 
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where 1  and loadZ Z come from the absorption material and the backing material, respec-

tively. The propagation constantβ , 1, and loadZ Z  are defined in  [12] as  
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 (2.1.6) 

If we normalize (2.1.5) with 0Z , we have a transcendental equation with 

six unknowns, which can only be evaluated numerically. This can be done by assigning 

numerical values to four of the six values and using a computer-implemented complex-
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root-finder algorithm to find the numerical values of the remaining two values that satisfy 

the condition  [14].  MATLAB and MATHCAD can be used to solve this equation  [13]. 

The resulting equation is 
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For our case, the backing material is PEC so 0loadZ = . In this case, the re-

sulting equation is 
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The six unknown can be reduced to four by normalizing with t λ  as follows: 

 , ,, , ,,,  ,  ,  r r r r
t t t ta b x yε ε µ µ
λ λ λ λ

= = = =  (2.1.9) 

In terms of new parameters, our transcendental equation is now 

 1 tan(2 ( )( ))x jyj a jb x jy
a jb

π−
= − −

−
 (2.1.10) 

By solving this equation, we can create the Universal design chart in Figure  II-4. By us-

ing that chart, we can predict the material electrical properties. For a frequency of 10 

GHz, 0.03λ =  m. The layer thickness must be as low as 1 mm so that 1 30t λ =  to get a 

good cancellation for a relatively small amount of extra weight.  

We assume that the composite material consists of titanium, ferrite, car-

bonyl iron, silicone rubber, and nickel. Most metals have 1rε and for most nonmag-

netic materials 1rµ . Titanium and nickel have 1rε = . Carbonyl iron has 
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4 0.23,  r jε = − with 50% of its mass being C: Fe  [15]. Silicone rubber has 

3 0.225 r jε −  [16], and finally ferrite-50 has 21 13.86r jε −  [17]. By using all these 

materials in sufficient amounts, the composite material should be able to reach the final 

permittivity. Let us assume that the material property changes linearly depending upon 

the ingredients. Using the Microsoft Excel “solver add-in” to find the percentile of the 

material needed, we optain Table  II-2 that displays the new material properties. Note that 

the objective is to maximize the loss tangent, subject to reaching a small density amount 

in order to minimize extra weight. 

 

Figure  II-4 Universal Design Chart for zero specular reflection absorber layer 
(PEC) (After  [13]) 

Table  II-2 New Material properties 

Relative Permittivity Ferrite-50 Carbonyl IronSilicone RubberTitaniumNickel
 

Total Density

 0.49 7.87 0.98 4.5 8.9 Density (gr/cm^3) 1.83 
Real 21 4 3 1 1   
Imaginary 13.86 0.23 0.225 0 0 TOTAL 
      Found Needed 
Percentile 0.6 0 0.2 0.1 0.1 1 1 

New Material  AIM Loss Tangent     
Real 13.4 12 0.623955     
Imaginary 8.361 12      
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Our computation concludes that the composite material needs to have 60 

percent ferrite-50, 20 percent silicone rubber, 10 percent titanium and 10 percent nickel. 

With this composition, the complex relative permittivity will be  

 13.4 8.361r jε = −  (2.1.11) 

As shown in the table, the new composite material has a density of 1.83 3gr cm . The ex-

tra weight that the layer adds to the missile is found by determining the volume. The sur-

face area of the missile can be calculated to be 1.4×106 2cm  (surface area of a cylinder is 

2 rhπ  and that of a cone is rlπ ). For a thickness of 1 mm, the final volume will be 

1.4×105 3cm . This results in an extra weight of 256.2 kg, far less than the total weight of 

the missile (86,636 kg) and insignificant for our simulation. 

Now, we must determine the permeability of the layer. By applying 

(2.1.11), the values “a” and “b” and the loss tangent are found to be 
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By using Figure II- 4 (depicted as a line) or using the MATLAB “solve” 

built-in function, we calculate the ,
rµ  and ,,

rµ  values as 
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Finally, we determine the permeability of the composite material as 

 13.17 8.31r jµ = −  (2.1.12) 

By using (2.1.11) and (2.1.12) and editing “utilities” in the POFACETS  [9], the new ma-

terial can be created to apply over the ICBM. After applying the material, Figure  II-5 is a 

plot of the missile with the new RCS values that is also compared to the original values. 
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Figure  II-5 Comparison of RCS for stage-1. The red line represents the reduced 
RCS. The green line represents the average reduction. 

 

As shown in Figure  II-5, the composite material achieves an average re-

duction of 29 dBsm in the RCS of the missile stage. Figure  II-5 shows only stage-1 re-

sults and demonstrates the significant change in the RCS. The other stages have the same 

pattern of reduction. The realization of such composite material, a method to achieve a 1 

mm thickness on the missile, and a cost analysis are all beyond the scope of this thesis. 

Nonetheless, they comprise a practical goal that may be achieved in the next five years. 

All such missile applications require advanced systems engineering.  

3. Effect of RCS Reduction 

Figure  II-6 plots the magnitude of the position error when a RCS reduction is used 

in the simulation. Note that, when using normal RCS values, the average position error is 

about 70 m, with a maximum error of 140 m  [5]. As shown in Figure  II-6, the average 

position error introduced by a reduced RCS is 1500 m; the maximum position error is 
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4500 m. The original simulation used a guidance update time of 0.15 s. When that update 

time is retained, the interceptor is responsive, cannot fly more than 5 miles and crashes. 

In Figure  II-6, the update time used to collect the data is increased to 2 s. 
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Figure  II-6 Position error introduced by fusion system when the RCS is reduced. 
 

When a large difference occurs in the average sensed position of the target at each 

sample time, the navigation unit sends large acceleration commands. Figure  II-7 shows 

the closure velocity for the interceptor (the data update interval is 2 s).  



22 
 

 

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

11

Time (min)

V
c 

(k
m

/s
)

 

Figure  II-7 Closing velocity versus time during the intercept of a reduced-RCS 
target. (The data update time is increased to 2 s.) 

 

The fusion algorithm used in Figure  II-7 is an arithmetic averaging method that 

was used in the original version of the simulation. Better performance is obtained by us-

ing a Bayesian and Kalman filtering fusion technique, which will be investigated in 

Chapter III. Figure  II-8 shows both the commanded and the achieved lateral acceration 

obtained by the missile throughout the flight (the update time is 2 s, using the original 

fusion algorithm). 
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Figure  II-8 Maneuver of interceptor toward the missile. The red line represents 
the achieved acceleration by the guidance system. 

 
C. CHAFF CLOUDS 

Chaff is the oldest, but still the most widely used, passive jamming technique 

against radar  [18],  [19]. The effect of this passive EA is the creation of a camouflaged 

background to cover the target.  

A chaff cloud can be dispensed in many ways: a) by creating a corridor by con-

tinuous chaff dropping (moved by the effect of wind); b) by dispensing chaff bundles to 

simulate false targets; c) by dispensing chaff bursts to conceal the target; d) by dispensing 

chaff with forward-fired rockets to produce a chaff cloud in front of the target. 

1. The RCS of the Chaff Cloud 
The RCS of the chaff cloud is a key aspect of this method, since the main idea is 

to create an RCS that is equal to or greater than the target missile.   
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The determination of the chaff cloud RCS can be approximated via  [20]: a) an 

aerodynamic solution that defines the cloud parameters as a function of space and time; 

or b) an electromagnetic solution of the scattering from this cloud. Another method of 

measuring the RCS is given by  [20], by which integration is used to calculate the total 

power returned from the cloud relative to the power returned by a point target of a known 

RCS. In  [19], the chaff cloud containing individual dipoles within the radar resolution 

cell is replaced by a single equivalent scatterer that returns the same amount of power to 

the radar. The size of the equivalent scatterer should then be equal to the volume of the 

resolution cell. The equivalent RCS is found as 

 2 2/16  mc A E R cσ πηθ φ τ=  (2.2.1) 

where η is the back-scattering coefficient in 2 3m m , Aθ  and Eφ  are the azimuth and the 

elevation beamwidth in rad, respectively. R is the range in m to the resolution cell, τ is 

the radar pulsewidth in s, and c is the speed of light in m s . 

Chaff is composed of a large number of shorted antenna dipoles  [19], which can 

be made from paper, glass, fiber, or Capron, covered with a conductive layer (e.g., metal-

lic foil)  [18].  The length of the dipoles should be approximately equal to 0.46 0.48λ λ− , 

where λ is the wavelength of the radar. The individual chaff orientation in the air is a 

matter of randomness. An approximate relationship that can be used to calculate the RCS 

of a randomly oriented dipole is given in  [19] as 

 
2 2

2 2( , )(1 cos2 ) .   mG kk θ λσ
π

= +  (2.2.2) 

where 2k πλ= , is the length of the dipole, and ( , )G kθ  is the gain of the dipole. The 

gain of the dipoles varies with angle and orientation. Further analysis of (2.2.2) gives us 

the average RCS of the individual randomly oriented dipoles as 2 2
1 0.15  mσ λ= , whose 

length is given above  [21]. 

2. Consideration of Chaff Tactics to Be Used 
There are many ways to use chaff to degrade the radar performance  [22], but most 

of them are not useful for our case. 
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a. False Target 

Dispensing a bundle of chaff at various time intervals is one techniques: it 

causes the defense to exhaust their supply of interceptors. But this method is not useful if 

the real target is moving quickly. In this case, the discrimination of the target can be fast, 

since the target moves away from the cloud quickly. For example, the X-band Doppler 

radar integrates 20 pulses using a PRF of 150 Hz. This takes approximately 0.13 s, which 

is less than the usual update time of the fusion box.  

b. Screening 

Screening dispenses the chaff in order to create a corridor to submerge the 

target return. This method also is not useful in our case due to the requirement for the tar-

get to stay within the cloud. Creating a corridor that completely covers the target trajec-

tory for a limited time is nearly impossible. For example, at time t = 85 s, the target has a 

velocity of about 2.3748 km/s, and its altitude is approximately 45 km above sea level. At 

this speed, the length of chaff corridor required is 11 km, as in Figure  II-9. The target 

cannot dispense the chaff because the cloud will always be located at the back of the tar-

get and thus will not screen the target.  

 

 

Figure  II-9 The chaff corridor needed to cover the trajectory.  

 
c. Forward-Fired Chaff 
This technique uses a missile to launch a chaff rocket to the front of the 

target missile to create a chaff cloud. The launch time of the chaff rocket must be calcu-



26 
 

 

lated precisely, so that the dispersion of the chaff takes effect and covers enough area to 

screen the target. The number of chaff dipoles needed for this action is found by using 

(2.2.3). To find the RCS, we first need to calculate the volume of the corridor.  

Let us assume that the volume is a rectangular box with a length of 11 km 

and a width ten times larger than the radius of the target (e.g., 2.6 m). In this case, the 

surface area will be equal to 1,144,676 m2. The RCS values of the target varies between 

0.3 m2 and 35 m2 for different aspect angles. Therefore, within the time interval of 85-90 

s, an RCS of 35 m2 must be created to insure coverage of the target. The chaff cloud’s 

RCS can be found from 

 1
0 (1 )n

c A e σσ −= −  (2.2.3) 

where 0A is the geometrically projected area of the cloud, n is the number of dipoles per 

unit of cloud projected area, and 1σ is the average individual dipole RCS. When the di-

poles become widely separated, this equation reduces to 1c Nσ σ= , where N is the num-

ber of dipoles contained in the cloud. The RCS value must be equal to the maximum RCS 

of the target to be covered. From here we find N = 259,260 dipoles within every range 

cell of the radar. In general, the RCS of the chaff should be at least twice as much as the 

platform that we intend to protect  [18]. Furthermore, the position of the target and the 

radar cannot be known precisely in order to predict the look angle and the corresponding 

RCS value. The probability of a chaff RCS being greater than the target echo is addressed 

in  [5]. That analysis can be applied to our case. For a 90 percent probability of our chaff 

cloud RCS being greater than the missile echo, the necessary number of dipoles required 

is N = 1,862,087  [5]. 

d. Obscuration 

Obscuration is a method that degrades the radar performance by locating a 

chaff cloud at its look angle. The chaff cloud’s first objective is to attenuate the radar’s 

signal so that the radar maximum detection range of the target is degraded. The electro-

magnetic wave traveling through the chaff cloud is attenuated due to scattering and ab-

sorption from the individual dipoles in the cloud  [21]. Figure  II-10 illustrates this effect. 

The needed chaff amount for this method is at least 100 times greater than the self-
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protection screening technique  [22]. The incidence electric flux within the cloud due to 

the radar beam is given by  [21]  

 
2

0

( )
4

( )

t
i t

R

t

G iS P e
R

i ds

γ

π

γ ρ σ

−=

= ∫
 (2.2.4) 

where iS is the incidence flux, ( )tG i  is the one-way antenna gain in the direction speci-

fied by the unit vector i, tP  is transmitted power, R is the distance from the radar and the 

volume elements in question, ρ is the density of the dipole and ( )t iσ is the average total 

scattering cross section of a dipole. 

As in  [18], we assume that the scattered radiation is isotropic and related 

to the average RCS of the cloud. The diffused fields through the chaff cloud are non-

coherent, and the total field is the sum of the field caused by the individual field. 

 

Figure  II-10 Attenuation of the electric field within the chaff cloud (After  [18]). 
 

From the above assumption, the degree of attenuation of the power density 

in a chaff corridor of length x∆ is given as  [18] 

 

0
v

v

x

dp dx
p

p p e σ

σ

− ∆

= −

=
 (2.2.5) 
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where vσ  is the average RCS density of the chaff cloud, and 0p is initial boundary condi-

tion for the incident wave. From (2.2.5), the degree of attenuation of the power density in 

decibels can be found as 

 0.1
010 xp p α− ∆=  (2.2.6) 

where    4.3 dB/mvα σ= . The radar attenuation in range is found by using (2.2.6), with 

x∆ increased by a factor two. Figure  II-11 shows the geometry of the obscuration sce-

nario. 

 

Figure  II-11 Representation of the obscuration scenario. 
 

To find out where the degradation factor in the radar range is a factor of 

10, the radar equation can be used. With 5x∆ =  m, the required chaff density will 

be 2 30.9302  m mvσ = . The area required to be covered is 11 km ×1 km at an altitude of 

45 km during the missile’s time of flight. Thus, we need to cover a 2400 m ×222 m area 

on the line of sight of the radar at an altitude of 30,000 ft, which is a normal aircraft alti-

tude. From the dimension of the field, the volume is calculated as 2,664,000 m3. The re-

quired RCS for achieving a factor-of-10 degradation in the radar range is therefor 



29 
 

 

2.4781× 106 m2. To get this RCS value, the needed number of chaff dipoles is 

1.8352× 1010. The weight of the chaff cloud can be found from  [19] 

 c
kW

f
σ =  (2.2.7) 

where 217000  m -GHz/lbk = for aluminized glass chaff, which has a density of 

2550 3kg m , W is the weight in pounds, and f is the radar frequency in GHz. By using 

(2.2.7), the weight of the chaff bundle is found to be 3489.67 10×  kg, which cannot be 

carried by a single aircraft. 

3. Effect of the Chaff Cloud 
Of the chaff techniques discussed above, only the forward-fired chaff-rocket tech-

nique is feasible. To evaluate the effect of the chaff cloud created by a forward-fired 

rocket, the time until the target enters the chaff cloud is varied from 80 s to 147 s in the 

simulation. The exit time from the chaff cloud is a constant, 5-s interval after entrance 

into the cloud. While the target is within the cloud, the RF sensors cannot receive any po-

sition information. Due to the fusion center having received no new information within 

the 5-s window, the guidance commands for the interceptor cannot be updated, and the 

interceptor keeps on flying to the last received position of the target.  

The average miss distance when not using chaff is 15 m. The resulting miss dis-

tance versus entrance time to the chaff cloud is shown in Figure  II-12. With the corridor 

entrance at 80 s after the ICBM launch, the miss distance is small (the effect of the corri-

dor tolerable), since the interceptor guidance can compensate by readjusting the flight 

path early in the scenario due to the relatively low speed of both missiles. At 80 to 85 s, 

the missile velocity is around 2.1 km/s.  When the second staging of the ICBM occurs, 

the acceleration drops considerably. If this part of the scenario occurs within the chaff 

corridor (120 s), the effect is significant, since no updates are gathered by the radar to re-

flect this acceleration change. Consequently, the interceptor guidance commands remain 

constant and a large miss distance is incurred. The most significant effect of the chaff is 

realized when the target enters the corridor in the last few seconds of the interception. 

The effect may be enhanced further by making the chaff corridor length longer.  
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Figure  II-13 shows the command lateral acceleration during the entire flight, with 

the target entering the corridor at 140 s (just prior to interception). Also shown is the 

achieved accelation. Note that the command lateral acceleration gets very small when the 

missile enters the corridor and increases quickly after the missile leaves the chaff corri-

dor, in an attempt to compensate for the previous loss of target. The achieved guidance, 

however, is unable to compensate completely, since the corridor is placed so late in the 

flight. Consequently, a large miss distance is incurred.  
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Figure  II-12 Miss Distance versus target’s entrance time to chaff corridor. 
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Figure  II-13 Command lateral acceleration during flight. Entrance into chaff cor-
ridor at t =140 s. 

 
D. ACTIVE JAMMING 

In this section, we will discuss the effect of jamming by the ICBM on the RF sen-

sors used in the boost phase defense system. All the ICBMs are assumed to be tracked if 

the radar systems are able to achieve a Line of Sight (LOS). All the radar systems are as-

sumed to be located close enough to the ICBM launch positions. 

1. Jamming Power Density 
The power density returned from target ICBM must compete with the internal 

noise of the radar. The radar’s parameters used in  [5] are shown in Table  II-3. 

Table  II-3 Generic Radar Parameters (After  [5]) 

Parameter Value
Frequency 10 GHz (X–Band)
Peak Power 1 MW
Antenna Gain 50 dB
Beamwidth 0.5×0.5 degrees
Pulsewidth 50 sµ
PRF 150 Hz
Number of Pulses Integrated 20
Receiver Noise Factor 4
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The internal noise can be calculated as in  [7]: 

 0 n nN kT B F=  (2.3.1) 

where 231.38 10   J/degk −= × is Boltzmann’s constant, 0 290 T = is standard temperature 

in degrees Kelvin, nF  is the noise factor of the radar, and 1 20 kHznB τ= =  is the band-

width of the radar. From this standpoint, the internal noise for the generic radar is 
163.2 10−× 154.9 dBW= − .  Most radar systems require receiving at least 10 to 20 dB SNR 

to detect a target  [7],  [23]; hence the jammer must introduce sufficient power into the ra-

dar antenna to eliminate the detection. The jamming power density at the radar receiver is 

given as 

 0 24
j j r

j

P G AJ
B Rπ

⎛ ⎞ ⎛ ⎞= ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (2.3.2) 

where , ,  and j j jP G B are the jammer power, antenna gain toward the intended radar, and 

the noise bandwidth, respectively. Here rA is the antenna aperture area, and R is the range 

between jammer and the radar. It is assumed that radar antenna is pointed directly to tar-

get and the all other losses are neglected  [23].  The aperture of the generic X-band radar 

was not defined but can be found easily from the gain formula, if the aperture efficiency 

is assumed to be unity. The gain of the radar can be found from 

 41253
r

A E

G
θ φ

=  (2.3.3) 

where  and A Eθ φ are the azimuth and the elevation beamwidth in  degrees, respectrively 

 [24]. The other gain equation is 

 2

4 r
r

AG πρ
λ

=  (2.3.4) 

where ρ is the aperture efficiency assumed to be unity, and λ is the wavelength of the 

intended radar. Substituting (2.3.3) into (2.3.4), we find the radar aperture is 11.82rA =  

m.  
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When 10 W of jamming power are used to generate the noise jamming, the result-

ing power is far above the noise level of the radar. The jammer antenna gain is assumed 

to be 10 dB. In  [23], it is implied that “the 10-dB antenna gain could be obtained with a 

simple cavity antenna, flush-mounted on the surface of the final stage and covering a sec-

tor 90° in azimuth by 45°  in elevation. This tactic would obviate the necessity of know-

ing the radar’s location.” 

Even in the worst case, in which the EA system is a broadband noise jammer that 

has no information about the radar parameters, the resulting jamming-to-noise ratio is on 

the order of +70 dB, which prevents any target detections.  The jamming power density at 

the radar’s antenna versus the range from the jammer to the radar is shown in Figure 

 II-14 through Figure  II-16. 

 

Figure  II-14 Jamming power density at the RF-1 radar antenna versus range from 
jammer to target. Jammer power is assumed to be 10 watts.   
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Figure  II-15  Jamming power density at the RF-2 radar antenna versus range from 
jammer to target. Jammer power is assumed to be 10 watts.   

 
Figure  II-16 Jamming power density at the RF-3 radar antenna versus range from 
jammer to target. Jammer power is assumed to be 10 watts.   
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2. Jamming Effects 

The effect of the jamming is to force the radar to use angle-only measurements for 

tracking the target’s position. When the jammer power is such that the radar can achieve 

detections, the low Signal-to-Jamming Ratio (SJR), shown in Figure  II-17, causes the 

standard deviation of the range and angle measurement error to be large, which gives 

large position errors. If the fusion center does not use an advanced algorithm, but either 

the weighted average or just the average, the guidance produced by the navigation algo-

rithm may either force the missile to crash or force the fusion center to increase the data 

update interval to smooth the position error.  

The simulation runs for a jammer power of 10 W and a bandwidth of 4 GHz (X-

band only). Even if less power is used, the average miss distance increases by 7 m. The 

resulting tracking range error for each RF sensor is shown in Figure  II-18; the angle error 

for each RF sensor is shown in Figure  II-19.  
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Figure  II-17 Signal to Jam Ratio. Pj = 10 W, Bj= 4 GHz 
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Figure  II-18  RMS errors in range introduced while target is jamming. Pj = 10 W, 
Bj= 4 GHz. 

 
Figure  II-19 RMS errors in angle introduced while target is jamming. Pj = 10 W, 
Bj= 4 GHz.   
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The average power of the jammer may also be increased. Figure  II-20 taken from 

 [22], implies that with an extra weight of 100 lbs, a 10-kW narrowband HPM can be used 

as a jammer emitter. 

 

Figure  II-20 Average power versus weight of the narrowband HPM (From  [22]). 
 

If we increase the jammer power to 10 kW while keeping the bandwidth the same 

(e.g., 4 GHz), the resulting SJR is shown in Figure  II-21, the RMS error in range is 

shown in Figure  II-22, and the RMS error in angle is shown in Figure  II-23. The miss dis-

tance is immense. The interceptor cannot finish its mission; it has an average miss dis-

tance of 10,000 m due to the large uneven commanded acceleration. 
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Figure  II-21 Signal to Jam Ratio: Pj = 10 kW, Bj= 4 GHz 

 
Figure  II-22  RMS errors in range introduced while target is jamming: Pj = 10 kW, 
Bj = 4 GHz. 
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Figure  II-23 RMS errors in angle introduced while target is jamming: Pj = 10 kW, 
Bj = 4 GHz. 

 
If the jamming denies the range detection and forces the radar to use angle-only 

measurement, the tracking position error is even worse. The position error using triangu-

lation (use of two or more RF sensor’s data to decide the position) is shown in Figure 

 II-24. The large commanded lateral acceleration that causes the interceptor to crash is 

shown in Figure  II-25. In order to complete the flight, the data update time is increased to 

5 s. The resulting miss distance is on the order of 100 km. 
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Figure  II-24 Position error introduced using triangulation. The resulting miss dis-
tance is 539 km.  
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Figure  II-25 Lateral acceleration of the interceptor while using a fusion center that 
uses the triangulation. 
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E. ACTIVE DECOYS 

In this section, the effect of active decoys will be investigated.  

The monopulse radar has a natural defense against EAs. Modern radar systems 

use advanced radar techniques (e.g., monopulse tracking), and efficient electronic protec-

tion (EP) to reduce the significant effect of EAs. We can consider a monopulse radar op-

erating in frequency agility mode and exploiting Anti Range Gate Stealing (ARGS) EP 

techniques at presently difficult threats to be jammed  [25]. There should be an effective 

system to defeat the monopulse radars, and using active decoys is one of them.  

There are two types of decoys in use. The first is a towed decoy, which is com-

posed of a small flying repeater jammer at the back of the airborne target, that mimics the 

signature of the real target to lure the threat missile onto itself. Since there is no appropri-

ate place to hang the decoy, this type is not suitable for ballistic missile defense. Second 

is the expendable decoys, which are dispensed to defeat the incoming missile. The ex-

pendable decoys are described below. 

1. Repeater Decoys 
To apply the seduction, the decoy repeater needs to radiate enough power into the 

radar receiver. The implementation does not pose any problem. One of the antennas re-

ceives the victim radar signals. After processing this signal, the other antenna re-radiates 

it. A typical repeater block diagram is shown in Figure  II-26. 
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Figure  II-26 Typical repeater block diagram (From  [26]) 

 

The repeater performance can be defined in two ways: (a) the jam-to-signal ratio 

(JSR) and (b) the repeater gain, which is a constant. In  [26], JSR is given as 

 
2

24
dr dt d

p

G G GJ
S L

λ
πσ

=  (2.3.5) 

where drG is the repeater receiver antenna gain, dtG is the repeater transmitter antenna 

gain, dG is the repeater amplifier gain, pL is the polarization loss, λ is the radar wave-

length, andσ is the target RCS. As is seen from (2.3.5), the ratio is range independent. 

When operating in saturation, (2.3.5) becomes range dependent as given by 

 
2

max4

t t p

R PJ
S PG L

π
σ

=  (2.3.6) 

where R is the range to the missile, maxP is the maximum repeater power output,  tP  is the 

radar transmitted power, and tG is the radar antenna gain. Here the polarization loss is an 
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important issue. Because the decoys designers cannot be sure about the real polarization 

of the radar being attacked a circular or 45° slant polarization may generally be used. 

This causes a 3 dB loss. 

If the distance between the decoy and the dispensing platform is much less than 

the distance between the platform and the threat missile, and the repeater receiver and 

transmitting antenna are assumed to be identical in gain, the gain of the repeater is given 

as  [18] 

 2
dr

j
d

K
G

G
σ

=  (2.3.7) 

where jK is defined as the SJR. 

2. Passive Reflectors 
Some good reflector shapes can also produce high RCS.  The reflector must have 

the smallest possible external dimensions and have broad reflection patterns, since the 

orientation of the reflector cannot be known beforehand  [18].  Corner reflector is the kind 

of device that has a large RCS compared with its physical area. Other types of reflectors 

can be produced via Lunenburg lenses and Van Atta arrays. The calculation for various 

types of passive reflectors are given in  [18]. 

3. Effect of Decoys 
In the simulation, the decoys are not modeled in detail. Only the RCS of the de-

coys at any given time is given, so the missile tracking system is lured toward the decoys. 

Because the decoys do not have any propulsion mechanism to move, whenever they are 

released from the ICBM, the speed of the decoys is the same as the velocity of the ICBM 

initially; but it starts to decrease due to gravitation and the drag of the air. The separation 

of the target and the decoy is so smooth that the initial phase can be cumbersome for the 

radars. A good analysis of the track transfer to the decoy is given in  [5]. In Figure  II-27 

(a), the decoy release time versus miss distance is shown. In Figure  II-27 (b), reacquisi-

tion of the ballistic missile time of radar versus miss distance is shown. 
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   (a)      (b) 

Figure  II-27 Miss Distance as a function of decoy (a) release time and (b) reacquisi-
tion time (From  [5]). 
 

As shown in Figure  II-27, when the decoy’s release time approaches the time-to-

go, interception time, the miss distance will also increase. The most important point illus-

trated in the figure is the reacquisition time. If the reacquisition time is large enough, the 

missile interceptor cannot recover. Monopulse radar can discriminate two targets if their 

separation distance is more than the length of a resolution cell, which is 3.5 km if the ra-

dar-to-target distance is assumed to be 400 km. Because the target and decoy separation 

is smooth, the 3.5-km distance can be reached in a short time. Even if the speed of the 

ICBM can be varied depending on the decoy release time, the discrimination is done very 

quickly.  

A representation of the radar resolution cell is shown in Figure  II-28 in which Aθ  

is the azimuth beamwidth in rad, Eφ is the elevation beamwidth in rad, R is the range in 

m, c is the speed of light in m/s, and τ is the pulse width in s. The discrimination depends 

on the azimuth and elevation beamwidth and the range to the related cell.  
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Figure  II-28 Radar resolution cell 
 

Figure  II-29 shows the ICBM-decoy separation for various release times. When 

the decoys are released at t = 90 s, the separation takes palce within 10 s. Even when the 

decoy is released at t = 30 s, as is shown in Figure  II-29 (b), the 3.5 km is reached within 

11 s. That means that the reacquisition time cannot be greater than 12 s. Due to this dis-

crimination, we do not expect the miss distance to increase more than 100 m. 
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   (b)      (c) 

Figure  II-29 Target-decoy separation when the decoy is released at time (a) t = 90 s 
and (b) t = 30 s, and (c) t =90 s. 

 
F. SUMMARY 

This chapter investigated the EAs that can be used against RF sensors during the 

ICBM boost-phase defense system. The study included the reduction in the RCS of the 

target missile, the chaff tactics that can be used, the active barrage noise, and the use of 

passive reflectors and/or active decoys. 
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All countermeasures are effective over a poorly designed fusion center in which a 

weighted average of the sensed position from each of the radars is calculated.  The ad-

vanced fusion algorithm (i.e., using the Bayesian approach and/or Kalman filtering) is 

expected to reduce the effect of EAs. This counteraction is the subject of the next chapter. 
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III. ADVANCED FUSION TECHNIQUES FOR SINGLE TARGET  

This chapter presents an advanced fusion algorithm, using a Kalman filter and 

Bayesian analysis, to prevent or minimize the effect of the considered EAs. In the first 

section, we design a Kalman filter by using the least squares estimation method for the 

fusion center. In the second section, we will the previously developed Bayesian fusion  [6] 

into the simulation.  

A. KALMAN FILTERING 
In this section, we will define the system model and the algorithm that we applied 

to our simulation, by using the definition   [27]: 

An optimal estimator is a computational algorithm that processes meas-
urements to deduce a minimum error estimate of the state of a system by 
utilizing; knowledge of system and measurement dynamics, assumed sta-
tistics of system noises and measurement errors, and initial condition in-
formation. 

1. System Model 
The fundamental system model that was used in the 3-D simulation of the ballistic 

missile intercept is given in  [5].  The gravity field was calculated by using a perfectly 

round earth model with  

 2

GMg
r

=  (3.1.1) 

where 116.67 10G −= × 3 2m (kg.s ) is the gravitational constant, 245.98 10  kgM = × is the 

mass of Earth, and r is the distance from the center of the Earth to the point that is the 

magnitude of the position vector in m, based on the assumption that the Earth is a nonro-

tating, perfect sphere with uniform density  [28].  

The net forces acting on the missile are explaned as 

 netF = T + W  (3.1.2) 

where T is the trust vector, which is in the direction of the velocity unit vector, v  and 

W is the weight vector, which is in the direction toward the Earth center, but in the oppo 
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site direction of the unit vector of the position. Before giving the magnitude of these two 

major forces, we consider the Drag vector, D , which is assumed to be zero over the mis-

sile body.  

Unless otherwise stated, the missile has a perfect aerodynamic body that reduces 

the drag; however, the drag vector cannot be neglected at altitudes less than 300,000 ft, 

which is approximately 100 km  [29]. Because most of the boost-phase missile intercep-

tion takes place below this altitude, the drag in the opposite direction of the velocity unit 

vector needs to be accounted for as a major force that affects the missile body. Using this 

consideration, the net force vector can be redefined as: 

 

2

2

sp

d

dm gI
dt

mg
V ACρ

= −

=

=

netF = T + W + D

T

W

D

 (3.1.3) 

where dm dt is the in-stage fuel consumption in kg s , g is the gravitation that is given in 

(3.1.1), spI  is the specific impulse in s, m is the mass of the missile in kg , ρ is the air 

density  [30], A is the cross-sectional area of the missile body,  and dC is the zero-lift drag 

coefficient. 

The variant acceleration motion model is given in (3.1.3). The position and the 

velocity change in time can be written as 

 
1

( 1) ( ) ( )
( )( 1)

( )
net

k k k
k k k

kk
m k

+ ∆
+ = + ∆

+ =

x( ) = x( ) + V( )
V V a

Fa

 (3.1.4) 

where k is the time index of the discrete time, ∆ is the time interval, x is the position, 

V is the velocity, and a is the acceleration vector, respectively.  

2. Dynamic System Matrices 
All vectors have three dimensions that can be represented in a three-axis coordi-

nate system. The state-vector of the dynamic model in six-dimensions is 
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 ( )
T

x y zk x y z V V V⎡ ⎤= ⎣ ⎦X  (3.1.5) 

where the first three variables define the position of the missile, and the last three define 

the velocity of the missile in the Cartesian coordinate system. The missile dynamics may 

be represented by the vector-matrix equation as 

 ( 1) ( ) ( )k k k+ = +X FX ν  (3.1.6) 

where X is the state vector defined in (3.1.5), F is the state transition matrix, and ν is the 

plant (system) noise having a covariance of Q , which accounts for any unmodeled mis-

sile acceleration that can result in a deviation from the intended trajectory.  

The radar sensor can measure the target’s range, azimuth, and elevation. The pre-

vious simulation assumed that all sensors convert the measured data to a ECEF Cartesian 

coordinate system independently and then send it to the fusion center. The fusion center 

is assumed to have all information in the same format (a Cartesian coordinate system). 

From this assumption, the measurement equation can be written as 

 ( ) ( ) ( )k k k= +Z HX ω  (3.1.7) 

where  ( )kZ is measurement vector that can be defined as 

 ( )
m

m

m

x
k y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z  (3.1.8) 

H  is the measurement matrix, which can be defined as 
 

 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

H
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.1.9) 

and ω is the measurement (sensor) error, which has a covariance of R . 

The only unknown matrix, the transition matrix, can be found by substituting 

(3.1.3) into (3.1.4). The resulting transition matrix is as follows. 
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 1 ( ) 0 0
0 0 0 1 ( ) 0
0 0 0 0 1 ( )

W T D
W T D

W T D

∆⎡ ⎤
⎢ ⎥∆⎢ ⎥
⎢ ⎥∆

= ⎢ ⎥− ∆ + − ∆⎢ ⎥
⎢ ⎥− ∆ + − ∆
⎢ ⎥

− ∆ + − ∆⎣ ⎦

F  (3.1.10) 

where  

 3
GMW =
x

 (3.1.11) 

 2

sp
dm I GM
dtT

m
=

x v
 (3.1.12) 

 22
dGMC AD

m
ρ

=
x

 (3.1.13) 

and, x  and v are the magnitude of the position and the velocity vector, respectively. A 

detailed derivation can be found in  [29]. 

3. Noise and Covariance 
The noise terms defined above are assumed to be zero mean (implying an unbi-

ased sensor) with the following covariance structure  [31]: 

 
cov( ( ))
cov( ( ))

k

k

k
k

=
=

Q ν
R ω

 (3.1.14) 

where cov( ) is the covariance operator, and all noise sequences are uncorrelated as in 

[31] 

 
cov( ( ), ( )) ,     
cov( ( ), ( )) ,    
cov( ( ), ( )) ,     ,

j k j k
j k j k
j k j k

=∅ ∀ ≠
=∅ ∀ ≠
=∅ ∀

ν v
ω ω
ν ω

 (3.1.15) 

The sensor, which tracks the target, has known measurement noise depending on 

its accuracy. The sensitivity and the accuracy of the RF sensors are given in  [5] in three 

dimensions ( , , )R θ φ : 
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 3
,

1

 (angular error) 
(2( ) )

dB

iK S N Nθ φ
θσ =  (3.1.16) 

 
1

1  (range error)
2 (2( ) )R

i

c
K S N N

τσ =  (3.1.17) 

where 3dBθ is the beamwidth of the radar in the related angular dimension, K is the RMS 

angle error for monopulse radar and is assumed to be 1.7 for simulation, ( )1S N  is the 

single pulse SNR of the radar, and iN  is the number of pulses that are integrated to in-

crease the SNR. The standard deviation in angle (or bearing) is assumed to be the same 

for the azimuth,θ , and the elevation, φ , due to the same beamwidth used (a pencil 

beam). 

The covariance of the measurement will be 

 

2

2

2

0 0

0 0

0 0

R

θ

φ

σ

σ

σ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

R  (3.1.18) 

Because the radar converts the polar measurement into Cartesian coordinates, the linear 

measurement becomes nonlinear. The nonlinear transformation to a Cartesian coordinate 

system is given by  

 
sin cos

( ) sin sin
cos

x R
k y R

z R

θ φ
θ φ
θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

z  (3.1.19) 

using the conversion matrix  [12]: where R is the radius of the sphere from the center, the 

zenith angle φ  is measured from the positive z-axis and describes the conical surface 

with its apex at the origin; and the azimuth angle θ  is the same as in the cylindrical coor-

dinate system. With the nonlinear transformation, we must, now, approximate the covari-

ance of the measurement in the new coordinate system.  

Let ( )y f x= , a nonlinear transformation of x. We know that for a small error, xε : 

 0 0 0( ) ( ) ( ) ( )x x xf y f x f x f xε ε= + ≅ +  (3.1.20) 



54 
 

 

where this is the first order Taylor series expansion about 0x , and 0( )xf x is the gradient 

of the transformation evaluated at 0x . The mapping of the covariance can be formulated 

as  [32] 

 0 0cov( ) ( ) cov( )( ( ))T
y x x xf x f xε ε=  (3.1.21) 

where superscript T is the matrix transpose, and yε is the errors in function ( )f y . 

By taking the gradient of the transformation evaluated at the measured values in 

(3.1.19) and applying the formula given in (3.1.21), we can obtain the mapped covariance 

matrix as 

 

4 2 2 2 2

2 2 4 2 2

2 2 2 2

sin cos cos cos sin sin
sin sin cos sin sin cos

cos sin 0

R m m R m m R m m

R m m m m m mx
y

R m mz

R
R R

R

θ φ

θ θ θ φ

φ φ θ

σ θ φ σ σ θ φ σ σ θ φ
σ σ θ φ σ θ φ σ σ θ φ

σ σ θ σ σ θ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

R  (3.1.22) 

 
 

where subscript m stands for measured value at time k.  

The process (plant) noise must be modeled to account for the unmodeled or arbi-

trary inputs that may cause the vehicle to stray from a deterministic trajectory. Using the 

target acceleration to model the random target motion is suggested in  [33]. The standard 

acceleration given in  [33] is a first-order Markov process, which can be written as: 

 2( 1) ( ) 1 ( )
mm ma k a k r kρ ρ σ+ = + −  (3.1.23) 

where the maneuver correlation coefficient, mρ , is given in terms of sampling time, ∆ , 

and maneuver time constant, mτ , as 

 m
m e τρ

∆
−

=  (3.1.24) 

The mσ is the maneuver standard deviation, and ( )r k is a zero-mean Gaussian variable 

with unit standard deviation  [33]. The target acceleration is shown in Figure  III-1. 
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Figure  III-1 Target maneuver (acceleration) during boost phase 
 

The maximum of the acceleration is 4.89g. For every stage change, the accelera-

tion drops to an initial value and starts to increase again. The distribution of the accelera-

tion is exponential within the stage. Using one third of the maximum acceleration as mσ  

is recommended by  [33]. While the full derivation can be found in  [33], for the limiting 

case, which assumes that the sampling time is much greater then the maneuver time con-

stant ( )mτ∆ , the covariance of the process noise can be written as in  [34] 
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3 2
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2

2

2

0 0 0 0
3 2

0 0 0 0
3 2

0 0 0 0
3 2

0 0 0 0
2

0 0 0 0
2

0 0 0 0
2

k q

⎡ ⎤∆ ∆
⎢ ⎥
⎢ ⎥

∆ ∆⎢ ⎥
⎢ ⎥
⎢ ⎥

∆ ∆⎢ ⎥
⎢ ⎥

= × ⎢ ⎥
∆⎢ ⎥∆⎢ ⎥
⎢ ⎥

∆⎢ ⎥∆⎢ ⎥
⎢ ⎥

∆⎢ ⎥∆⎢ ⎥⎣ ⎦

Q  (3.1.25) 

where 0.001q = is an empirically derived process noise coefficient, which is set to a con-

stant value to achieve a balanced velocity and position estimation. 

4. Fusion Algorithm  
Because the simulation runs using an invariant time interval for all sensors, and at 

any given time all sensors produce a measurement, which is assumed to come from the 

same track, the Kalman filter is initialized by static values in which the position comes 

from the state fusion based on the trace of the covariance matrix given in  [35]. The veloc-

ity is an arbitrary, relatively small number that is calculated for a given aimpoint. The 

fusion method is based on the trace of the covariance matrix which is expressed as: 

 
1

ˆ ( ) ( )
N

i i
i

k a k
=

= ∑x z  (3.1.26) 

where N is the total number of radars, ( )kz is the measurement from the ith radar at time 

k, and ia is a quotient calculated as 

 

1

1 ( ( ))
1

( ( ))

i
i N

j j

tr R ka

tr R k=

=

∑
 (3.1.27) 

where ( )tr is the trace operator, and ( )iR k is the mapped measurement covariance of the 

ith radar at time k. The quotients ia  sum to unity by assumption. 
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The initial covariance, (0)P , is calculated using the measurement covariance ma-

trix and multiplied by coefficient 10 to create a relatively large variance due to initializ-

ing with static values as 

 (0) 10 f

f

∅⎡ ⎤
= × ⎢ ⎥∅⎣ ⎦

R
P

R
 (3.1.28) 

where fR is the fused 3 3× mapped measurement covariance matrix, and ∅  is the 

3 3× zero matrix. After initialization, the steps of the algorithm are as follows: 

a. Prediction 

 ˆ ˆ( 1| ) ( ) ( | )k k k k k+ =x F x  (3.1.29) 

 ( 1| ) ( ) ( | )( ( ))T
kk k k k k k+ = +P F P F Q  (3.1.30) 

b. Correction 

 
1

1( 1| ) ( 1| )T T
k kk k k k

−

+⎡ ⎤= + + +⎣ ⎦K P H HP H R  (3.1.31) 

 [ ]ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )kk k k k k k k+ + = + + + − +x x K z Hx  (3.1.32) 

 1 1( 1| 1) ( ) ( 1| )( )T T
k k k k kk k k k + ++ + = − + − +P I K H P I K H K R K  (3.1.33) 

where kK is the Kalman gain at given time, and I  is a 6 6× identity matrix. 

5. Effects over Electronic Attacks 
The main advantage of the Kalman filtering-based fusion algorithm is the reduc-

tion of the tracking position error. For the normal (without EA) case, the position error 

comparison is shown in Figure  III-2. Because the initialization is from the static values, 

the initial position error is more than the average. The Kalman filter is able to converge 

quickly, thus minimizing the position error. The average miss distance is 10 m. 
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   (a)      (b) 

Figure  III-2 Position error introduced by the fusion center: (a) Kalman Filter, and  
(b) weighted average. 

 

a. Effects against Jamming 
The effect of the individual EA techniques while using the Kalman filter-

based fusion algorithm is investigated next. Figure  III-3 shows the tracking position error 

while being jammed. The resulting average miss distance is 12 m, which is 2 m higher 

than the nonjamming case. 
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Figure  III-3 Position error introduced by Pj = 10 kW and Bj= 4 GHz jammer 
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Figure  III-4 and Figure  III-5 show the effect of the Kalman filter, while 

the radar uses angle-only measurements for detection of the target. Using triangulation, 

the position error increased slightly, but it is still well below the non-Kalman case. The 

triangulation itself is a nonlinear transformation, so the covariance must be mapped again 

to compensate this side effect. The resulting average miss distance is about 15 m, and the 

convergence of the filter takes more time than unjammed cases. 

 

Figure  III-4 The position error introduced by triangulation, while using Kalman 
filter based fusion algorithm.  
 

As shown in Figure  III-5, the lateral commanded acceleration is almost 

smooth and the achieved lateral acceleration follows it with a set time gap that is due to a 

third-order order system transfer function  [5]. 
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Figure  III-5 The command lateral acceleration during the flight while using trian-
gulation and applying the Kalman filter-based fusion algorithm. 
 

b. Effect against RCS Reduction 

The RCS reduction reduces the SNR of the target. A low RCS tends to in-

crease the covariance of the RF sensor and the sensed tracking position errors. The uncer-

tainties due to a low RCS cause the Kalman filter to be unstable and increase the error in 

the estimated position. The miss distance, however, does not change significantly.  

Figure  III-6 shows the position error when using the reduced RCS, Figure 

 III-7 shows the command lateral acceleration during the flight. The increasing error, 

shown in Figure  III-6, around 20 s and  90 s, is caused by the relatively low RCS, which 

is shown in Figure  III-8. 

The average miss distance is 15 m. Note that the position of the RF sen-

sors is important here. The increased position error causes an increase in miss distance. 
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Figure  III-6 Position error introduced by the RF sensor when the RCS is reduced. 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Time (min)

La
te

ra
l A

cc
el

er
at

io
n 

(g
)

Commanded

Achieved

 

Figure  III-7 Guidance command during the flight when using reduced RCS. 
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Figure  III-8 RCS seen by the RF sensor of the simulation. 
 

c. Effect against Chaff 
The effect against chaff is less complicated. If the chaff-corridor entrance 

time is approximately the last phase of the interception, the miss distance caused by using 

the chaff corridor is slightly increased. Before that time, there is no observed increase 

caused by the chaff corridor.  

d. Effect against Decoys 
The effect of the decoys comes from the track transfer to the decoy and is 

also due to the robustness of the monopulse radar. The transfer time cannot be more than 

12 s. The Kalman filter-based fusion algorithm is able to detect the deviation and correct 

it. Because the sensors get the information from the decoys, the covariance of the meas-

urement will be different. In this case, the filter itself increases the gain and compensates 

the effect after a delay. Figure  III-9 shows the tracking position error introduced when the 

decoys are released at t = 90 s. This is the perfect time for decoy release, according to  [5]. 

The track reacquisition time is 20 s, which is way beyond our scenerio, but is used to test 

the algorithm. The resulting miss distance does not change significantly. 
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Figure  III-9 Position error with decoy release. 
 

e. Effect against Combined Attack 
A combined attack might be applied by the target. It can include the use of 

jamming during the whole flight time, with a jammer that uses Pj = 10 kW and Bj = 4 

GHz. The chaff corridor is created for t = 85 s over of 11 km, and the decoys are released 

just after the corridor exit time, with a reacquisition time of 20 s. The target is assumed to 

use a composite material that reduces the RCS. Because of the reduced RCS and the rela-

tively high jamming power, the RF sensor is forced to use an angle-only measurement to 

create the measured position. This might be the worst-case scenario that a target missile 

produces. In reality, this scenario is unlikely to be applied because the power needed for 

the jammer is too large, and the required chaff rocket and decoys and the weight of the 

RCS reduction material, will degrade the missile performance 

Figure  III-10 shows the tracking position error caused by the combined at-

tack, Figure  III-11 shows the command lateral acceleration during the flight. The inter-

ception takes place 8 s later; the resulting average miss distance is 3,444 m. Even if this is 

an unlikely, worst-case scenario and the interceptor stays on course, the Kalman filter 

based fusion algorithm cannot mitigate the effect completely. 
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Figure  III-10 Position error during combination attack. 

 

Figure  III-11 The command lateral acceleration during the combination command. 
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B. BAYESIAN FUSION 
In this section, we will investigate the Bayesian approach for the fusion system. A 

previous thesis  [6] investigated the fusion algorithm for the boost-phase defense system 

and concluded that the Bayesian fusion is the best among all that were compared. 

Although  [6] explored the algorithm, data used were from the RF and IR sensors 

for input to the algorithm. Only RF sensors are investigated in this work, and the algo-

rithm is revised to include three RF sensors. The sensor measurements are assumed to be 

Gaussian  [6].  

1. The Theory of Bayesian Fusion 
The Bayesian approach is simply a maximum a posteriori technique to estimate 

the state of the target, given the measurement is ready for the time step k+1. This fusion 

technique requires the pdf for the unknown parameter ˆ( )kx , which is the target state esti-

mation. The method can be formulated as 

 1
ˆ ˆ( ( ) | ) ( )ˆ( | ( ))

( ( ))
k k

k
i

i

p k pp k
p k+ =

∏
z x xx z

z
 (3.2.1) 

where ˆ( )kp x is a priori pdf of the state estimation and ˆ( ( ) | )kp kz x is the conditional pos-

terior pdf of measurement given previous estimation. ( ( ))i
i

p k∏ z is a normalizing prod-

uct that is found from the measurement of the RF sensor, i indicates the ith sensor, and k 

is the time step. The goal of the estimator is to seek a state estimation that maximizes 

(3.2.1).  

The Bayesian fusion can be helpful in determining the probability estimate, given 

the measurement from the radar. It is implied that the Bayesian method has the ability to 

use subjective probabilities for the a priori probabilities, which leads us to conclude that 

the estimation is only as good as the input data  [36]. 

The drawbacks of this method are  [36]: 

• Difficulty in defining a priori pdf. 

• Complexity when there are multiple potential hypotheses and multiple 
conditional dependent events. 

• Requirement that competing hypotheses be mutually exclusive. 
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• Lack of the ability to assign general uncertainties. 

Finally, the computation complexity of the algorithm calculation is the main disadvantage 

of this approach. 

2. Bayesian Fusion Algorithm 
The algorithm uses three RF sensors that are not collocated. The pdf of the meas-

urement is defined in  [5] and  [6] as Gaussian 

 ( ( )) ( , )i kp k Nz z R∼  (3.2.2) 

where z is the first moment of the measurement vector, ( )i kz , and kR is the covariance 

matrix.  

The conditional pdf of (3.2.1) posteriori can be written as 

 
11 ˆ ˆ( ) ( )1 2 2ˆ( ( ) | ) 2

T

kp k eπ
−− − −−=

z x P z x
z x P      (3.2.3) 

where the covariance comes from the state estimates.  

The probabilities between the two points can be found from integration of (3.2.3). 

The illustration of the intersection of the three RF sensors pdf is shown in Figure  III-12. 

 

Figure  III-12 The illustration of the pdf intersection volume 
 

To achieve merging the previously used fusion algorithm, we use the same algo-

rithm as in  [6], find the random samples that are in the volume of the most probable inter-

section area, and calculate the estimation that gives the highest value for (3.2.1).  

The position error introduced by Bayesian fusion is shown in Figure  III-13. The 

tracking position error is greater than with the Kalman filter-based fusion algorithm for 
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normal tracking and the individual EA case, although the tracking ability is more stable. 

In Figure  III-13, the normal case position error is shown for comparison. 
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Figure  III-13 The position error produced by the Bayesian fusion algorithm 
 

3. Effect of Bayesian Fusion 
The Bayesian fusion produces more stable results than the Kalman filter approach 

because it is less dependent on the measurement covariance than the Kalman filter. The 

Kalman filter is the best estimator that can be applied recursively; but because it is related 

to the covariance of the measurement and the plant noise, it can produce large errors 

when the distribution is non-Gaussian. The Kalman filter cannot converge in such cases 

and becomes unstable. The stability of the Bayesian makes it a good backup when the 

introduced track error is large.  

In the worst case of using a combination attack by the target missile, the effect of 

the Bayesian is predictable. It reduces the position error within its stability range while 

for the other cases, the use of the Kalman filter may be considered. 

The computation complexity of the Bayesian fusion algorithm makes it impracti-

cal for a real-time case. Producing the random sample matrices and choosing the best 

within them can be cumbersome if the measurement standard deviation is increased. The 

algorithm itself takes 27 s for a single time step in MATLAB®. If a total of 3,250 time 

steps are considered during full interception, the computation complexity can be easily  
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shown. The time consumption can be reduced if we use the sub-optimal Bayesian 

method. This method will be introduced in the next chapter investigating multi-target 

tracking. 

Figure  III-14 is the position error introduced by the Bayesian fusion algorithm 

when the target uses a combination of attacks described above. 
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Figure  III-14 The affect of the combination attack over Bayesian fusion.  
 

Figure  III-15 shows the command lateral acceleration during the flight. The re-

sulting miss distance is 510 m, which well below the Kalman filter case. 
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Figure  III-15 The command lateral acceleration during the combination attack 
while using the Bayesian algorithm. 
 
C. SUMMARY 

In this chapter, an advanced fusion algorithm is introduced. The Kalman filter, 

which is the best estimator, using the least squares estimation, greatly increases the track-

ing capability. Individual EA effects are fully mitigated by this time-friendly algorithm. 

During a worst-case scenario, when the target uses a combination of attacks, the Kalman-

based fusion algorithm fails. 

Another advanced fusion algorithm is the Bayesian fusion, which is taken from 

[6]. The algorithm is more stable than the Kalman filter but too slow for use in real-time 

applications. A sub-optimal approach is needed to reduce the time needed for Bayesian 

algorithm. For this reason, we continue with the Kalman filter-based fusion algorithm to 

track the missile. 
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IV. MULTI-TARGET TRACKING AND KILL VEHICLE 
REQUIREMENTS 

In this chapter, we will address multi-target and KV requirements for the boost-

phase intercept defense system. A single target against a single sensor is the simplest sce-

nario for a tracking simulation, but this simple scenerio is not realistic. Multiple-target 

tracking (MTT) is an important requirement for a boost-phase defense system.  

A. MTT SYSTEM 
The basic MTT system block diagram is shown in Figure  IV-1. Because the Kal-

man filter is optimal only when the observation used to update the track file is from the 

same target being tracked, it is important that track-measurement pairs be found cor-

rectly. 

 

Figure  IV-1 The block diagram of multi-target-tracking (MTT). 
 

In the beginning, sensors are needed to detect the signal from the targets, and tar-

get discrimination must be performed to distinguish a ballistic missile target from all oth-

ers. Then, the location of the target must be estimated, so that the multiple-target algo-
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rithm can commence.  The track initialization, correlation and association, state estima-

tion and filtering, and track deletion can only be started after the signal is detected. 

1. Target Discrimination 
Target discrimination is not actually a part of an MTT algorithm. But since the 

objective of the boost-phase ballistic missile defense system is to intercept an ICBM 

launched toward friendly territory, we need to address discrimination. To achieve the ob-

jective, the system needs to differentiate a lethal echo from a nonlethal echo, and a friend 

from a rival, in the surveillance region. The modified schematic of the MTT block dia-

gram should be as in Figure  IV-2. 

 

Figure  IV-2 The suggested MTT block diagram with target discrimination. 
 

Work concerning target discrimination has generally focused on the mid-course 

defense system. The discrimination algorithm differentiates a warhead from decoys or 

balloons in the exoatmospheric region. This is investigated in  [37],  [38],  [39],  [4], and 

 [2]. 

References  [37],  [38],  [40], and  [2] discuss the IR sensors to discriminate the tar-

get in question while references  [39],  [38],  [40], and  [2] deal with the RF sensor to dis-
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criminate the target. Reference  [42] suggests using a combined “signal, feature, and deci-

sion level fusion” to discriminate, so that the hypothesized system is robust over noise 

and sensor degradation.  

To discriminate the ICBM target at boost-phase, we need to analyze the features 

and characteristics of the target during the boost-phase in which we are interested. Then, 

we can differentiate the target among other echos in the area under surveillance.  

Contrary to a mid-course target, we have an advantage with a boost-phase target, 

due to its high IR signature. The high temperature of the missile plume is easy to detect in 

the atmosphere in the related spectral band. In  [5] and  [6], the IR signature of the boost-

phase target is investigated, and they concluded that a medium wave IR detector (3-5µm ) 

is needed to track the object, due to atmospheric transmittance. The ICBM plume has an 

approximate temperature of 1,035 K and has peak values that occur at a wavelength of 

~2.8µm . Figure  IV-3 shows the spectral intensity of the Titan IIB missile, which has an 

approximate plume area of 600 2m  [6]. 
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Figure  IV-3 Spectral intensity of Titan IIB at an angle of attack of 7.4 deg (From 
 [6]). 

Because the peak radiation emitted at different temperatures can differ in wave-

length and the missile body can also have a different IR signature, “using different spec-

tral bands will be useful not just for observing any one object at multiple wavelengths, 

but also for determining an object’s temperature”  [4].  Table  IV-1 shows the IR band for 

some important target plume temparatures. 
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Table  IV-1 Peak radiation emitted by objects at different temperatures (From 
[4]) 

Temperature of Object (K) max ( )mλ µ Radiation Band Used to Track Object

1000 2.9 Short-wave infrared 

675 4.3 Medium-wave infrared 

450 6.4 Medium-to-long-wave infrared 

300 10 Long-wave infrared 

180 16 Long-wave infrared 

 

Since we need to know the background effect at any level in order to increase the 

signal-to-clutter ratio and effectiveness of the discrimination algorithm,  [37] suggests 

storing information beforehand to evaluate. For this purpose, the midcourse Space Ex-

periment (MSX) satellite was launched into a 900 km polar orbit in 1996, to be “a long-

duration, observatory-style measurement platform that collects several terabytes of high-

quality data on Earth, Earth limb, and celestial backgrounds, ICBM-style targets, and 

resident space objects”  [37]. The collected “phenomenology data” will be used to cover 

the gaps in a discrimination database  [37]. Storing data on all types of flying-objects will 

help create a look-up table to compare with when needed.  

An exact pattern of ballistic missile plume luminosity during its powered flight is 

given in  [23]. Although this pattern does not belong to an actual threat, we can observe 

similar rocket plume peak patterns during their boost-phase. 

Using IR sensors is not enough for discrimination purposes, even if the IR signa-

ture is strong. RF sensor discrimination should also be used to insure the target’s configu-

ration; hence we use the “multi-level sensor fusion algorithm for improved target dis-

crimination”  [42].  

The RF sensor can use the RCS data that was investigated in  [5], and in Chapter II 

of this work. The RF sensor can also use an integrated multiple model (IMM) type algo 
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rithm to discriminate the target in question. Using a hidden state to eliminate an unlikely 

echo, with the help of a “neural network-based sequential Bayesian classifier,” is sug-

gested in  [40]. 

In addition to those signature types, the ICBM has a continuously increasing 

speed in its trajectory toward the aimpoint. The trajectory and the speed can be used to 

easily identify the ICBM among the other echos. Even if an echo comes from a commer-

cial satellite launch that might use the same type of propellant, giving almost the same IR 

signature and speed, the trajectory estimation can be used to discriminate. All data col-

lected by the radar and the IR sensor will help eliminate uncertainties. 

Finally, “high range resolution techniques for ballistic missile targets” in the mid-

course are used in  [39]. They can be separated by 1 km at most. The technique suggested 

here can be modified for a boost-phase target that is not separated but that has tremen-

dous speed as was already addressed in the paper. 

2. Track Initiation 
A definition of “new” tracks is given in  [43]:  “combinations of multiple sensor 

reports, separated in time, which do not correlate with any existing track, and provide 

reasonable kinematic parameters.”  

A track initialization can be divided into two steps: 

a. Initiation of a tentative track when the measurements from a sensor cannot be 

paired with an existing track. This type of initiation can be used for any observations that 

are not in the correlation gate of previously initiated tracks (to confirm that the new track 

is really new). 

b. The confirmation of a new track is a process in which the newly initiated track 

file is the real targets because a tentative initiation can be created for clutter and or false 

targets. 

If any of the tracks are not updated with suitable correlated measurements, they 

become degraded and, therefore, will eventually be deleted  [33]. 

The initiation algorithm should be implemented separately from correlation and 

association. There are recursive methods (e.g., NN-type algorithm, track split-type algo-
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rithm, and M/N process), the two-point extrapolation method, the sliding window 

method, and the batch processing algorithm for different implementations  [44]. 

No track initiation algorithms are implemented and addressed in the simulation. 

The track initialization is assumed to be done with the help of the IR sensors prior to the 

RF sensor’s tracking for simplification. 

3. Correlation 
The correlation process assumes that the existence of an initial conditional state 

and a covariance of tracks at the time that a new measurement or a set of measurements is 

known. The measurement’s covariance, which is accepted as unbiased and normally dis-

tributed with zero mean around the real target position, is well known.  

Correlation is done to relate the observation or measurement from the set of RF 

sensors to the existing track files, or to initiate a new track file  [45]. By applying correla-

tion, we eliminate improbable measurement-to-track pairings  [46] and determine which 

possible pairs are reasonable  [34]. 

To construct a realistic simulation, all uncorrelated observations or measurements 

need to be cleared for every scan. “Elimination can be enforced by screening (prior to the 

generation of hypotheses) or by pruning (after generation of hypotheses). Gating, cluster-

ing, and classification is a screening technique; n-scan approximation is a pruning tech-

nique”  [46].  

Gating is a window constructed around the predicted measurement for a track; it 

is a very effective technique that reduces false correlations. Only observations whose 

measurements lie within the gate volume are associated with the existing track. 

We assume that the motion of the target is described as in (3.1.6), with the plant 

noise ( )kν  whose covariance is kQ , and the measurement is described as in  (3.1.7) with 

the measurement noise ( )kω whose covariance is kR . The innovation, ( )kz , which is a 

vector of differences between the measured values and the predicted values can be found 

as  [43],  [33] 

 ˆ( ) ( ) ( 1| )kk k k k= − +z z H x  (4.1.1) 
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where  kH is the measurement matrix at time k, and ˆ ( 1| )k k+x is the predicted state of the 

target. It can be found as 

 ˆ ˆ( 1| ) ( | )kk k k k+ =x F x  (4.1.2) 

where kF is the known transition matrix, and ˆ( | )k kx is the previous state estimation. The 

innovation variance is derived from the predicted covariance matrix, which should con-

tain the variances of the quantities that are in the measurement vector. The innovation 

covariance can be found as in  [33] 

 ( 1| ) T
k k kk k= + +S H P H R  (4.1.3) 

where ( 1| )k k+P  is the predicted covariance of the state, and is found as 

 ( 1| ) ( | ) T
k k kk k k k+ = +P F P F Q  

where ( | )k kP is the previous state covariance.  

For gating to work properly, the measurement’s individual component should not 

be biased. When we map the measurement to the Cartesian coordinate system, due to the 

nonlinear mapping function the individual component will be biased. Hence, we need to 

use the extended Kalman filter to circumvent this situation. 

The size and the shape of the gate can be defined in various ways. The exact defi-

nition is in  [45] 

 1
k

T
kD G−= ≤z S z  (4.1.4) 

where D  is the norm of the residual and G  is the maximum likelihood gate, which can 

be defined as “a gate such that an observation falling within that gate is more likely from 

the track in question than from an extraneous source”  [33]. The adaptive formula for the 

gate is given by  [33]  

 
2

2 ln
(1 ) (2 )

d
M

d

PG
P β π

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠S

 (4.1.5) 
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where dP is the probability of detection, β  is the new source density, M is the measure-

ment dimension, and S is the determinant of the innovation covariance matrix. 

The gate defined in (4.1.4) as the most general gate, which is known as the “ellip-

soidal gate”  [33],  [46], and has the  target in its center. The exact shape of the ellipsoid 

depends on the variance in the measurement dimensions. Figure  IV-4 is a visualization of 

the ellipsoidal gate in three dimensions. The center is assumed to be at (1,000, 90, and 

120), and the error bins describing the axis length are (100, 50, and 50) in the Cartesian 

coordinate system. If all error axes are equal to each other, then this will be a sphere. 

 

Figure  IV-4 The general ellipsoidal gate in three dimensions. 
 

The value of the gate thresholds can be found by using (4.1.5). Chi-square approximation 

is less computationally demanding, but it is also less adaptive.  

If (4.1.4) can be transformed into its principal axes, which are off-diagonal, we 

reach the equation for the 3-dimensional case as: 

 
2 2 2

2 2 2

ˆ ˆˆ( ) ( ) ( )m m m

R

R Rq G
θ φ

θ θ φ φ
σ σ σ
− − −

= + + ≤    (4.1.6) 

where mR , mθ , mφ are the measured range, the elevation, and the azimuth with the vari-

ance of Rσ , θσ and φσ  while ˆ ˆˆ, ,R θ φ are the predicted parameter of the filter, respectively. 

All measurements are assumed to be normally distributed (i.e., (0, )N σ ). 
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If each of the components is Gaussian distributed, then their squared sum (of three 

independent and identically distributed (IID) standard normal scalar-valued random vari-

ables) q is 2
3χ , which is a chi-squared random variable with three degrees of freedom.  

The probability, GP , that a valid measurement will lie within the gate, G, can be found by 

the 2
3χ  table. For the case of three-dimensional measurements, the probability GP  can be 

expressed as  [33]: 

 
2

2 2

0

1 22
2

G u G

G
GP e du e
ππ

− −
= −∫  (4.1.7) 

where the first part of the right-hand side of the equation is the standard Gaussian prob-

ability integral. The values of GP  for various cases are given in Table  IV-2  [43] where M 

is the dimension of the measurement matrix, and G is the gate. 

Table  IV-2 Gate Thresholds and the probability mass GP  inside the gate (From 
 [43]). 

M       \     G 1 4 9 16 

1 0.683 0.954 0.997 0.99994 

2 0.393 0.865 0.989 0.9997 

3 0.199 0.739 0.971 0.9989 

If we define the gate parameter separately for each dimension, such that 
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 (4.1.8) 

then we have defined the rectangular gate.  

The rectangular gate is the simplest gating technique that is easy to im-
plement, because it tests the individual components of the measurements 
and needs less computations than ellipsoidal gating algorithm. But the el-
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lipsoidal gating is more precise, because for a given probability GP  of the 
true measurement being in the gate, ellipsoidal gating requires a smaller 
volume than the rectangular gating  [43]. 

Figure  IV-5 is a representation of the final fact that, for a given gate size, the ellipsoidal 

gating will have a smaller probability of containing an extraneous observation. 

 

Figure  IV-5 The rectangular versus ellipsoidal gating of previous visualization in 
two dimensions. 
 

As a final point, while the volume of the rectangular gate is the pruduct of all the 

variances, the volume of a three-dimensional gate for the ellipsoidal case can be found 

from the formula  [33] 

 
33 24

3GV Gπ= S  (4.1.9) 

4. Association 
Data association is the second part of a MTT. Association is the process that 

solves the ambiguities arising from the correlation method. According to  [33], the gating 

algorithm is only the first step of the MTT, and we need additional logic to determine an 

unambiguous measurement/track pairing.  
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Ambiguities arise when an observation lies within multiple track gates and/or 

when multiple measurements fall in a gate. Figure  IV-6 is an illustration of both typical 

situations. 

 

Figure  IV-6 Ambiguities of the data association (After  [33]) 
 

The association algorithm can be divided in to two categories: Bayes and non-

Bayes  [44]. The nearest-neighbor standard filter and the track-splitting algorithm, briefly 

described below, are non-Bayes-type approaches. 

We can create an assignment matrix by using the example in Figure  IV-6. We 

need to define a metric of measurement to evaluate the matrix. The likelihood function 

associated with the assignment of observation j to track i is given in  [33] as: 

 
2

2(2 )

D

ij M

i

eg
π

−

=
S

 (4.1.10) 
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Maximizing the likelihood function means minimizing the statistical distance. We 

can find the statistical distances as in (4.1.4) using the weight of the innovation covari-

ance. The assignment matrix helps us find the minimum 2 ( )D d= z  for every track. This 

method assumes that the probability of detection, dP , is equal to unity. For a multiple-

target case, the suggested method, nearest-neighbor standard filter (NNSF), will mini-

mize the total statistical distance for all possible pairings  [43], as is shown in Table  IV-3.  

Table  IV-3 Assignment Matrix for Figure  IV-6 

 Measurements 

#1 

Measurements 

#2 

Measurements 

#3 

Measurements 

#4 

Track 

#1 
9 X 4 X 

Track 

#2 
X 5 X X 

Track 

#3 
8 X X 3 

For the optimal case, this algorithm gives the highest number of potential assign-

ments, minimizes the total distance and finds the best global solution for the given time k. 

The combination (m choose n) that can be created from the matrix is found in  [43] 

 !
( )!

m
m n−

 (4.1.11) 

where max( , )m Tm N N= , min( , )m Tn N N= , and and m TN N  are the number of measure-

ments and the number of tracks, respectively. 

The total number of combinations can be increased exponentially when we track a 

large number of targets in a cluttered volume. In addition, dP cannot always be equal to 

unity. For an increase in the number of combinations, we can also use a sub-optimal solu-

tion, as is suggested in  [33] and  [43]. None of the sub-optimal solutions, however, ad-

dresses the unity probability of detection.  
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The track-splitting algorithm is another way of association that uses every obser-

vation to evaluate the track for a given period of time. At the end of the period, the 

branch that has a maximum total likelihood or minimum total statistical distance is cho-

sen. The other branches are deleted for a given track.  

We chose to use the all-neighbors-type of approach, which uses a similar algo-

rithm as the probabilistic data association filter (PDAF), to address the non-unity dP . We 

assume that  [43]: 

• The number of targets is known or given beforehand. 

• There is an existing track for every target or track initializing is done. 

• A target can produce, at most, one measurement for a given sensor at a 
given time. 

• A measurement could have come from, at most, one target, and any other 
measurements are false alarms/targets or clutter. 

• False alarms/targets and clutter are independent and uniformly distributed. 

• The conditional density of each target, given the past measurements, is 
Gaussian and independent across targets. 

• Each target is widely separated spatially, such that correlation gate over-
lapping is unlikely. 

• The elements of each (multi-dimensional) measurement are independent. 

The PDAF algorithm is a sub-optimal Bayesian approach for association prob-

lems. The joint probabilistic data association filter (JPDAF) is extended for a multi-target 

case. The JPDAF/PDAF “is a relatively simple recursive method that does not require 

either the storage of past observation data or multiple hypotheses”  [33] and is a special 

case of the multiple hypotheses tracking (MHT) algorithm. The MHT algorithm is de-

scribed in  [33],  [43],  [46],  [47],  [48], and  [49].  

In the case of a multiple-target scenario, the algorithm needs to address the cost of 

each possible measurement-track association, so we can find the feasible group, such that 

the cost of association is minimized  [50]. The data association problem should be handled 

by computing the joint posterior probabilities of measurement association with multiple 

targets in clutter; and then, by using calculated probabilities, the sub-optimal Bayesian 

estimate of the target position is updated  [51]. 
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The false alarm distribution needed for the MTT algorithm is assumed to be a 

Poisson model with spatial density, λ , as 

 ( )( )
!

m

F m e
m

λ λµ −= z z  (4.1.12) 

where m is the expected number of measurements in the gate. For a nonparametric case, 

we can assume that  [43] 

 m
V

λ =  (4.1.13) 

where V is the volume of the validation region given in (4.1.9).  

The probabilities of the algorithm can then be found by accounting for a missing 

detection as 
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where iβ  is the probability that the ith measurement is the correct measurement, km  is the 

total number of correlated observations at time k, and  
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After computating the probabilities, the filter oparates as follows: 

a. Combined innovation 

 

 
1

( )
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i i
i

k β
=

=∑z z  (4.1.15) 

b. Filter gain 
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−
⎡ ⎤= +⎣ ⎦K PH HPH R  (4.1.16) 

where P  is the predicted covariance which is the same covariance used in (4.1.3). 

c. State update 

 ˆ ˆ( 1| 1) ( 1| ) ( )kk k k k k+ + = + +x x K z  (4.1.17) 

d. Covariance update 

 0 0
ˆ(1 ) c

k β β= + − +P P P P  (4.1.18) 

where cP is the track update covariance for a single-target case, as in (3.1.33), and P̂ is 

the effect of measurement origin uncertainty on the state covariance, accounting for the 

use of more than one original measurement defined as 

 
1

ˆ
km

T T T
k i i i k

i
β

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑P K z z zz K  (4.1.19) 

5. MTT Algorithm Used 
For simplicity, the following assumptions are considered: 

a. There are only two targets at any particular time interval. 

b. Target discrimination and track initializing are done before the tracking 
algorithm commences. 

c. For tracking, there are enough RF sensors in the area. 

d. The RF sensors can update the measurement every 350 10−×  s. 

e. The RF sensors observe the target’s range R , azimuth angle θ , and eleva-
tion angle φ  with a Gaussian error if the targets are not jamming. When a 
jamming signal is present in the tracking space, the range information is 
suppressed, and the RF sensors switch to the angle-only measurement. 

f. The SNR = 26.7 dB for a worst case. If the targets’ RCS is reduced, the 
SNR = 10 dB. 

g. The probability of miss, 0.01mP = . 

h. When the measurement originates from the real targets, the probability of 
mass inside the tracking gate, 0.971GP = . 

i. There are, at most, five false alarm/clutter hits that can be seen per target 
at the time of each observation. 
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j. False target/clutter is intentionally created from the source of the original 
radar measurement with a different standard deviation coefficient, ranging 
from 1 to 3, to force the PDAF algorithm. All other extraneous measure-
ments are assumed to be gated out, using a rectangular gate with the 
same GP . 

The simulation uses the “scope.m”  (see Appendix B) function for every radar to 

get the observation for the time k. The function uses the SNR value to determine the re-

lated standard deviation of the error. The observation output format for the normal case is 

given in Table  IV-4 

Table  IV-4 The measurement output format of the “scope.m” function 

Range 

Azimuth angle 

Elevation angle  

RF position x-axis

RF position y-axis

RF position z-axis

The observation output format of the jamming case is given in Table  IV-5. The range in-

formation is set to zero, because it is suppressed due to jamming. 

Table  IV-5 The measurement output format for the jamming case 

0 

Azimuth Angle 

Elevation angle 

RF position x-axis

RF position y-axis

RF position z-axis

The function measures the original target position, at most five false alarm/clutter 

measurements and decoys/chaff measurements. The latter is taken only when de-

coys/chaff are released from the target; then, all of them are stored in a measurement ar-

ray. The RF sensor position in the Cartesian coordinate system is added at the end of each 
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measurement, so the fusion center can recognize which measurement comes from which 

sensor. In addition to the measurement array, the covariance of the measurement is pro-

duced in array format for use in the fusion center in the same manner. 

Correlation, association, and fusion are implemented by the “mash.m” function 

(see Appendix B). The function uses a “for-loop” for every initialized target and applies 

ellipsoidal gating. The probabilities of the correlated measurements are computed, and 

the association is implemented by the equations given in the previous section. 

We use spherical coordinate measurements to overcome the complexity of trian-

gulation, when the RF sensors are jammed. This causes the use of a nonlinear function 

for the measurement, while the motion of the target is defined in the Cartesian coordinate 

system. To make the correlation, we need to find the innovation that is equal to the dif-

ference between the predicted position and the measured position of the target. To define 

the correlation, we need to define the extended measurement function to find the innova-

tion. In a nonlinear case, the measurement is defined as 

 
( 1| )

( ) ( , )
k k

z k k
= +

=
x x

h x  (4.1.20) 
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h x , 

( 1| )k k+x  is the predicted position of the target in question, and x , y , z are the Cartesian 

coordinates of the given position. 

The measurement matrix H  is the gradient of the measurement function, which is 

evaluated at predicted position as follows 



88 
 

 

 

2 2 2 2 2 2 2 2 2

2 2 2 2

2 2

2 2 22 2 2 2 2 2 2 2 2 2

0 0 0

0 0 0 0

0 0 0
( ) ( )

k

x y z
x y z x y z x y z

y x
x y x y

x yzx zy
x y zx y x y z x y x y z

⎡ ⎤
⎢ ⎥
⎢ ⎥+ + + + + +
⎢ ⎥
⎢ ⎥= −⎢ ⎥+ +
⎢ ⎥
⎢ ⎥+
− −⎢ ⎥+ ++ + + + + +⎢ ⎥⎣ ⎦

H (4.1.21) 

Then, the innovation will be  

 
( | 1)

( ) ( | 1) ( , )
k k

k k k x k
−

= − −
x=x

z x h . (4.1.22) 

All other steps for the correlation and the association will be the same as given in 

the previous sections above. 

The estimated position and the related state covariance are used to get a fused fi-

nal estimation. The fusion algorithm uses an inverse of the trace of the covariance matrix 

given in (3.1.26) and (3.1.27). The estimated position for every track with related state 

covariance is returned for future use. 

The MTT algorithm uses ellipsoidal gating as correlation. The clutter, which can 

be excessively close to the target, can be located in the correlation gate. Because of this 

effect, an estimation of the state cannot be optimum. An estimated normal tracking posi-

tion error is given in Figure  IV-7. 
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Figure  IV-7 The MTT algorithm position error for a normal-case scenario. The 
plot is done for two targets. 
 

When jamming is taken into account, the position error introduced by the fusion center 

due to angle-only measurement is shown in Figure  IV-8. At the end, the error is compen-

sated. 
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Figure  IV-8 The MTT algorithm target position error when it is jammed by both 
of the targets: Pj = 10 kW and Bj= 4 GHz. 
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The reduced RCS effect on the fusion center is shown in Figure  IV-9. The algorithm uses 

the reduced RCS and adjusts the gain of the filter to overcome it. At the end of the boost 

phase, the position error caused by the reduced RCS coating is reduced below 5 m, as in 

the jamming case. 

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

45

Time- (min)

M
ag

ni
tu

de
 o

f P
os

iti
on

 E
rr

or
- 

(m
)

Target #1
Target #2

 

Figure  IV-9 MTT algorithm target position error when both targets use reduced 
RCS coating. 
 

Because the correlation algorithm already takes into account decoys and chaff 

when they are released, their effects are less than the Kalman filter-based fusion center 

algorithm shown in Chapter-III. 

The combined-attack effect, described in Chapter-III, is shown in Figure  IV-10. 

While the error is high at the beginning, the algorithm achieves a reduction in error by the 

end of the boost phase. The MTT algorithm, which uses the sub-optimal Bayesian tech-

nique called PDAF, is more stable and less error-prone than the Kalman filter, defined for 

a single-target case in Cartesian coordinates in Chapter III. A miss distance analysis will 

be conducted along with the guidance acceleration analysis in the next section while 

evaluating the kill vehicle. 
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Figure  IV-10 MTT algorithm position error, when the combined attack is used. 
 
B. KILL VEHICLE 

In this section, we will discus the kill vehicle that is carried in a boost-phase bal-

listic missile interception. The purpose of this investigation is to give the basic require-

ments about KV. At the end, we will implement and analyze the effect of a KV’s end 

game in our simulation. 

All of the “KVs” recently reported are designed for mid-course intercept. Here, 

we examine the requirements of boost-phase kill vehicles. 

1. Evolution of Kill Vehicles  
The “Exoatmospheric Kill Vehicle (EKV) is a small flying device located in the 

tip of a Ground-Based Interceptor (GBI) missile. It is designed to separate from the GBI 

in flight and punch through the Earth’s atmosphere, and smash into the incoming ballistic 

missile”  [52].  

Since the first rocket launched in World War II, all military strategists have in-

tended to intercept an incoming missile on its way to the impact point  [53].  During the  
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last thirty years, homing-style interceptors have had enough accuracy to succeed in col-

liding with an incoming missile  [23]. The milestone of the progress can be summarized 

as follows  [54]. 

a. September 8, 1944: The Missile Age begins with German V-2 missiles. 

b. July 1945- March 1946: Military officers recommend that the U.S. start 
researching and developing ways to defend against incoming ballistic mis-
siles. 

c. 1957-1958: The U.S. steps up its missile defense efforts after the Soviets 
test Sputnik launch and begins work on the Nike-Zeus system, its first ma-
jor anti-ballistic missile system. 

d. July 19, 1962: One of the Army's Zeus missile interceptors, launched from 
Kwajalein Atoll in the Marshall Islands, comes within 2 km of a mock 
warhead that had been fired from California. 

e. November 10, 1966: The U.S. publicly confirms that the Soviet Union is 
deploying its anti-ballistic missile (ABM) system around Moscow, which 
had been first detected two years earlier. 

f.  March 23-25, 1983: The U.S. President Ronald Reagan, in a nationally 
televised address, calls for research and development of missile defenses. 

g. June 10, 1984: After several failed attempts, the Army successfully tests 
its Homing Overlay Experiment (HOE) in which a “kill vehicle” launched 
on top a booster rocket from Kwajalein Atoll in the Marshall Islands 
homes in on its target, an ICBM. 

h. January 29, 1991: The Pentagon's Exoatmospheric Reentry Vehicle Inter-
ceptor System (ERIS), which was built using technology from the SDI's 
HOE, reportedly hits and kills a mock target in space. 

i. June 24, 1997: The first “fly by” test of the National Missile Defense sys-
tem is conducted. 

j. October 2, 1999: The first hit-to-kill test of Clinton's NMD system is con-
ducted. Despite initial problems with its telescopes, the kill vehicle is able 
to locate the warhead and collide with it. 

k. March 15, 2002: Integrated Flight Test (IFT-8) is successfully conducted 
by interception of a ballistic missile target for the GMD program  [3] 

For the purpose of the kill vehicle, the HOE and ERIS projects are an important 

milestones. Both of them are examples of direct ‘hit-to-kill” interceptor. 

The HOE is a 

Vehicle consisted of the first two stages (Thiokol M55E1 + Aerojet Gen-
eral M56A1) of a LGM-30A/B Minuteman I ICBM, which boosted a large 
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KKV (Kinetic Kill Vehicle) to high altitude. The KKV was equipped with 
an IR seeker, guidance electronics and a propulsion system. Once in space, 
the KKV could extend a folded structure similar to an umbrella skeleton of 
4 m (13 ft) diameter to enhance its effective cross section  [53]. 

Figure  IV-11 shows the defined KV for HOE. 

 

Figure  IV-11 The HOE (From  [53]). 
 

The second important step in U.S. missile defense is the test of the ERIS.  

The ERIS test missiles consisted of the second and third stage (Aerojet 
General M56A1 + Hercules M57A1) of surplus LGM-30A/B Minuteman I 
ICBMs, which boosted the hit-to-kill interceptor vehicle into space. Sen-
sor and guidance technology of the ERIS KKV was based on the experi-
ence won by the earlier HOE (Homing Overlay Experiment) tests. Be-
cause of technology improvements the ERIS KKV, which used an inflat-
able octagonal “kill enhancer”, was significantly smaller and lighter than 
the HOE KKV  [56].  

Figure  IV-12 shows the defined KV for ERIS. The KV’s size and weight get 

smaller and smaller as the key technology of sensors, motion adapters and data-

processing devices are developed  [23].  
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Figure  IV-12 The ERIS (From  [56]) 
 

Finally, in 1997 and 1998, after the evaluation of the test results, “Raytheon was 

selected as the prime contractor for the development of the EKV for the operational GBI 

missile”  [1]. The benefits of the newly designed EKV are summarized as follows  [57]: 

a. adds synergy to a multi-layered defense, 

b. counters the threat in the midcourse phase of flight, 

c. target selection made in presence of multiple decoys,  

d. “hit-to-kill” technology allows complete destruction of weapons of mass 
destruction, and 

e. Payload consists of EKV and adapter for booster. 

Figure  IV-13 shows the developed KV for the midcourse. 
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Figure  IV-13 Raytheon EKV (From  [57]) 
 

For the KV configuration, the cruciform is mostly chosen to minimize the size 

and the weight of the KV  [23]. The four divert thrusters are mounted in the form of an 

“X” to give sensitivity in maneuvering. Owing to the center-located fuel tank, the center 

of gravity is not changed significantly when the thruster consumes the fuel. 

Until now, all KVs have been for the midcourse interception. While most of the 

design factors are the same, there are some differences in boost-phase KVs. The main 

difference is in the weight and the sensor types. Although, the “wet weight” (i.e., fully 

loaded with fuel) of the EKV for boost-phase is around 150 kg  [23], the “data sheet”  [57] 

indicates the weight of the Raytheon EKV is approximately 140 pounds. The weight dif-

ference comes from a need for an excess divert capability of the boost-phase KV. 

2. On-Board Sensors 
The sensor on a KV can be compared to the “eye” of a human being. The sensors 

typically consist of one or more seekers that acquire the target and help guide the vehicle 

to the interception point  [58].  

The selection of sensors depends on the target in question. Unlike a midcourse 

target, in the boost-phase target, which is assumed to use solid propellant, a plume of ex-

haust gases creates a smoke screen, which affects the IR seekers, depending on their ap-

proach angles  [58]. The high intensity of the exhaust gases helps detection, but for dis-

crimination purposes the seeker must detect the missile’s body temperature.   
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For the IR seekers, using the on-board SWIR seeker to track the plume is a solu-

tion suggested by  [23]. For the IR seekers to work accordingly, the atmosphere must be 

thin enough, and the surface of the seeker’s optical telescope needs to be cooled, as in the 

“Raytheon EKV.” The choice of a multiple-waveband IR seeker for the Raytheon EKV 

might be adopted for the boost-phase KV, even if it is more complicated than the SWIR 

seeker.  

The KV’s IR seeker has advantages over space-based IR sensors with respect to 

the background clutter. Most of the time, an IR seeker looks up toward empty space, 

which has a very cool background temperature. The signal-to-clutter ratio can be more 

than adequate for tracking. According to  [23], eventhough the seeker looks directly 

through the sun, the suggested IR seeker can detect the plume.  

For the purpose of hardbod-plume discrimination and to help to in the choice of 

IR seekers for the KV, a Near Field IR Experiment (NFIRE) satellite is planned for 

launching in 2006. “Data from the Near Field IR Experiment will help validate the 

MDA’s choice of KVs and tracking sensors for boost-phase missile defense, and help 

improve the guidance and homing ability of ground-based interceptors”  [59].  

The second sensor proposed the KVs is an active light detection and ranging 

(LIDAR) system  [23] and  [58], which is more accurate than the IR seekers. The LIDAR 

can measure the range to the target. With the help of passive imaging seekers, the LIDAR 

system can help improve fire control and weapon system applications to allow target ac-

quisition, tracking, classification, and imaging  [60]. 

The range equation of the LIDAR to detect the point mass target is given in  [60] 

as 

 
( )

4

4  m
16
T ATM SYSE DR

SNR hc
σ η η

λ
=  (4.3.1) 

where TE is the transmitted power, D is the optical aperture diameter in m, ATMη is the 

atmospheric transmission factor, SYSη is system transmission factor, SNR  is signal-to-

noise ratio, and 346.626 10  J-Sh −= ×  is the Planck’s constant. While the range is directly 

proportional to the aperture size, there is a limitation on the maximum aperture size. 
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The point resolution standard deviation is given by  [60] as 

 3 1 1  rad
16 TD SSNRθ
π λσ =  (4.3.2) 

where TS  is a complex function related to the image’s spatial distribution and antenna 

obscuration. For an unobscured aperture, this value can be accepted as unity. 

The characteristics of the space laser are listed in Table  IV-6. From there,  [23] 

chooses the Fibertec device. Depending on the values given in  [23], the accuracy of the 

LIDAR is assumed to be 0.5 m at the final stage of interception, which is much less than 

the diameter of the target of interest here. 

Table  IV-6 Characteristics of the Space Laser (From  [23]). 

Laser Efficiency 

Mars observer Laser Altimeter (1.06 µm , 40 mJ , 10 pps) 3% 

Vegetation Canopy Laser (1.06 µm , 15 mJ , 10 – 240 pps) 6% 

Fibertek proposal for improvement 1.06 µm  laser 10% 

Nd:YAG slab 1.06 µm , 808- nm  diode pump, 100 W ) 6% 

Yb fiber (1.03-1.10 µm , 100 W ) 6%-8% 

To improve the laser pointing accuracy, a joint observer-based adaptive controller 

is suggested by  [61]. With the help of a controller, system nonlinearities, such as KV dy-

namics, acceleration limiters, laser properties, and interaction between the KV and over-

all tracking system might be subjugated. 

In contrast to LIDAR, microwave radar or the state-of-art low probability of In-

tercept (LPI), radar can produce the same accuracy. LIDAR can be affected by alumina 

particle in the produced plume, depending on the angle of attack, due to the use of solid 

propellant. While range resolution is the same as LIDAR (0.5 m) within the last few sec-

onds, a 15-cm aperture radar with an aperture efficiency of 0.8, working at 10 GHz, using 

a pulsewidth of 16µs , can produce a resolution cell of 0.54×0.54 m at 10 km by assum-

ing, at least, the use of a 20-dB single pulse SNR . 
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If the problem with complexity, due to the increased numbers of FFTs required, is 

solved, FMCW LPI radar can also be used for a same size resolution cell, using only a 

fraction of the power  [62]. Using the “LPI Tool Box” supplied in  [62], the parameter of 

the LPI radar for a 0.5-m-resolution is shown in Table  IV-7. 

Table  IV-7 FMCW LPI radar parameter for 0.5 m resolution at 10 GHz.  

Doppler Frequency (Hz) df  612×103 

Max delay (s) dt  10×10-3 

Coherent processing interval (s) 0t  45×10-3 

Spectral width (Hz) ω∆  222.2×103 

Effective transmitted modulation bandwidth (Hz)  'F∆ 245.45×106

Degraded (effective) Resolution (m) 'R∆  0.61 

Maximum beat frequency (Hz) max
bf  55.15×106 

Minimum sampling rate of ADC (Samples/s) sf  110.3×106 

FFT size 'N  65,536 

Adjusted sampling rate of ADC (Samples/s)  '
sf  145.63×106 

Unambiguous max Beat frequency (Hz)  72.8×106 

Time bandwidth product (Hz/s) 0 't F∆  110.45×103 

 
 
 

3. Kill Vehicle Requirements for Intercept 
The requirements for a successful interception depend on the phases of flight that 

are given below. The phase of the interception is divided into four sections by  [23]: 

a. Interceptor boost: the phase between the launch of the GBI and the end of 
all boosters. In this phase, accuracy of the sea- or space-based sensors to 
guide the interceptor to the correct position is the only requirement. De-
pending on the accuracy of the guidance, the KV can be fired in a certain 
direction so the initial divert of the KV becomes smaller. Because this 
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phase affects the later phases, the filter that estimates the target position is 
very important. 

b. KV divert: the phase between the kill vehicle launch and the on-board sen-
sors’ acquisition of the target. If the interceptor boost phase is accurate 
enough, the KV can acquire the target easily. If the position of the target is 
much farther away than the expected position, the divert velocity and the 
time for acquisition will increase. The velocity change capacity of the KV 
is a key element in this phase. To make the final correction, the total ve-
locity change requirement is found to be 2.5 km/s for a closing velocity 

 in the range of10 14  km/scV −   [23]. 

c. KV homing: the phase between the acquisition of a target with an on-
board sensor and the final stage of the interception. In this phase, a basic 
requirement of interception is the accuracy and maneuver capacity of the 
KV. Because the intended boost-phase target continues to accelerate, the 
navigation adapter has to cope with this acceleration along with any possi-
ble evasive maneuver of the target. To achieve this,  [23] assumes that a 
maximum 15g capacity of the KV will be enough. This assumption is true 
only if the on-board sensor is accurate enough (i.e., within 0.5 m standard 
deviation, as was given in the section above). 

d. Endgame: the final stage of interception. “The KV must have sufficiently 
precise and timely information on the target’s current and probable future 
state and sufficient responsiveness and acceleration to hit the target”  [23]. 

In addition to accurate position information and the maneuver capacity of the kill 

vehicle, weight consideration is also an important factor for successful interception. A 

suggestion about the weight consideration is made by  [23]. Using an SWIR and a LIDAR 

as on-board sensors and a divert thruster for a total divert of 2.5 km/s, the estimated 

weight of the KV is given in Figure  IV-14. 
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Figure  IV-14 Properties of terrestrial- and space-based kill vehicles. Total divert: 
2.5 km/s. (From  [23]) 
 

Finally, the successful interception should end with destruction of the target. This 

can be achieved by a kinetic kill, which requires a “hit-to-kill.” In “hit-to-kill”, miss dis-

tance must be substantially less than the smallest dimension of the target  [63]. The con-

clusion given in  [63] indicates that a “hit-to-kill” homing accuracy against highly maneu-

vering targets in an environment of noisy measurement is hardly feasible. Because the 

feasibility of the direct hit is so small, we should consider a different approach to destroy 

the target. In  [64], other methods of destruction are described. Lethality enhancement de-

vices (LED), such as hexagon tungsten rods, should be investigated to improve the over-

all lethality of the KV. 
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4. The Final Simulation with KVs 
The scenario for which we run our simulation is described in Chapter I. Here, we 

discuss with how the KV is implemented in the simulation. 

The target and interceptor are ICBMs as described in  [5]. Every ICBM in the 

simulation is assumed to have four stages that include three booster stages and a final 

stage that is a warhead for the target and a KV for the interceptor.  

The parameters for the ICBM are created in a data matrix. Table  IV-8 shows the 

format of the input data matrix for the generic ICBM used in the simulation. 

Table  IV-8 The format of the input data matrix. 

Stage-#1 Stage-#2 Stage-#3 Stage-#4 

Stage weight in lbs, 

sm  

Stage weight in lbs, 

sm  

Stage weight in lbs, 

sm  

Stage weight in lbs, 

sm  

Stage Fuel in lbs, 

Fm  

Stage Fuel in lbs, 

Fm  

Stage Fuel in lbs, 

Fm  

Stage Fuel in lbs, 

Fm  

Specific Impulse, 

spI  

Specific Impulse, 

spI  

Specific Impulse, 

spI   

Specific Impulse, 

spI  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

The input data matrix, then, is reintroduced by the function reformDataMatrix 

(see Appendix B) to be able to use it in the simulation. After the reformulation, the data 

matrix will be in the form of a 8 4× matrix. Table  IV-9 shows the format of the final data 

matrix. The input matrix can be altered to change the parameter of the missile. Note that 

this simulation is not intended to investigate the optimum parameters for the missiles.  
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Table  IV-9 The format of data matrix that the simulation uses 

Stage-#1 Stage-#2 Stage-#3 Stage-#4 

Stage weight in kg, 

sm  

Stage weight in kg, 

sm  

Stage weight in kg, 

sm  

Stage weight in kg, 

sm  

Stage Fuel in kg, 

Fm  

Stage Fuel in kg, 

Fm  

Stage Fuel in kg, 

Fm  

Stage Fuel in kg, 

Fm  

Specific Impulse in 

s, spI  

Specific Impulse in 

s, spI  

Specific Impulse in 

s, spI   

Specific Impulse in 

s, spI  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

Stage burn time in s, 

st  

Fuel burn ratio, 

dm dt  

Fuel burn ratio, 

dm dt  

Fuel burn ratio, 

dm dt  

Fuel burn ratio, 

dm dt  

Canister weight in 

kg 

Canister weight in 

kg 

Canister weight in 

kg 

Canister weight in 

kg 

Next Stage time in s Next stage time in s Next stage time in s Next stage time in s 

Total weight in kg Total weight except 

first stage in kg 

Total weight except 

first and second 

stages in kg 

Weight of final 

stage in kg 

The stage index moves along the columns of the data matrix (look-up table) while 

the target properties are along the rows of the data matrix.  

The stage change is done by increasing the stage index when the stage-change 

time comes. The KV, the last stage of the interceptor, is assumed to be launched when the 

stage index reaches the final value and/or the optimum position is reached. The optimum 

position is the coordinate in the Cartesian coordinate system that is the best place to 

launch the KV; then the EKV navigates through the target and gets as close as possible to 

target. Owing to an unknown target-launch area and the trajectory for the aimpoint, the 

optimum point can be reached before the interceptor burn-out. Hence, the kill vehicle can 
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have less velocity than expected. To overcome this effect, we assume that the kill vehicle 

has enough fuel to burn to increase its speed or maneuverebility.  

The optimum point for the KV launch depends on the distance, which is the mag-

nitude of the line-of-sight (LOS) vector between the target and the GBI. We choose a 5-

km distance so that we could simulate the “endgame” and gain in the run-time of the 

simulation, since the simulation time step is decreased down to 500 µs  when the KV is 

launched. 

Both the interceptor and the KV are assumed to use PN, which is described in 

 [30]. Because PN is not designed for an accelerating target and the algorithm does not 

account for the target’s expected acceleration, a miss distance is inevitable. In addition to 

this, since we cannot decrease the simulation time step low enough, we cannot expect to 

see a miss distance less than 3 m due to the final speed of the target. The target can move 

3 m within the reduced time step with a speed of approximately 6,000 km/s. 

Because the guidance of the interceptor and the kill vehicle is not perfect and con-

tains lags (defined in the simulation as 5 s), the commanded lateral acceleration and the 

achieved lateral acceleration are not equal.The simulation uses a 3rd order transfer func-

tion for the flight control system. This causes an increasing miss distance, even if the 

tracked position is perfect. Figure  IV-15 shows the command lateral acceleration and the 

closing velocity, cV , that is reached, with an assumption that the fusion center always 

knows the true position of the target. The resulting miss distance is about 5 m for both 

targets.  

While tracking errors are given in the MTT section, the guidance commands for a 

no-EA case and a combined-attack case are given in Figure  IV-16 and Figure  IV-17. The 

resulting miss distances on average are 5.8 m and 6.2 m, respectively. Note that these re-

sults are for a no-delay launch of the interceptor (launch time for both targets and inter-

ceptors are assumed to be the same). 
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   (a)      (b) 

Figure  IV-15 The perfect tracking case (a) Guidance and (b) Closing velocity for 
MTT algorithm. Zero-delay launch. 
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   (a)      (b) 

Figure  IV-16 The no-EA case (a) Guidance and (b) Closing velocity for MTT algo-
rithm. Zero-delay launch. 
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   (a)      (b) 

Figure  IV-17 Combined EA case (a) Guidance and (b) Closing velocity for MTT 
algorithm. Zero-delay launch. 
 

A zero-delay-launch is unrealistic since a decision time is needed for launching an 

interceptor. Furthermore, a track initiation needs to be processed first. For Because of 

that, the interceptor launch time is increased to 30 s. While the guidance and the Closing 

velocity have not changed significantly, the miss distance increased to 800 m. Figure 

 IV-18 shows the 30-second-delay launch’s guidance and Closing velocity. 
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   (a)             (b) 

Figure  IV-18 The normal case (a) Guidance and (b) Closing velocity for MTT algo-
rithm. 30 second-delay launch. 
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To obtain an acceptable miss distance, the only parameter we can alter is the in-

terceptor data matrix. Using an exhaustive search, the new stage-burn times are 54 s for 

every stage, and a 500-lb KV weight is used. The resulting miss distance at best is 10 m. 

The lateral acceleration, Closing velocity, and resulting lateral divert with the 35-s-delay 

launch is shown in Figure  IV-19 through Figure  IV-21. 
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Figure  IV-19 The no-EA case lateral acceleration for the MTT algorithm with a 35-
second-delay launch. 
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Figure  IV-20 The no-EA case closing velocity for the MTT algorithm with a 35-
second-delay launch 
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Figure  IV-21 The no-EA case Lateral Divert for the MTT algorithm with a 35-

second-delay launch 
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The resulting interception velocity plot for the target and the interceptor is shown in 

Figure  IV-22.  
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Figure  IV-22 35 s launch delay Velocities 
 

The miss distance can be enhanced by approaching the target launch site, but this 

causes an initial location distance of approximately 234 km, which is unlikely. For 

evaluation of the delayed launch time, we keep the interception time within the targets’ 

boost time. For the 35-s delayed launch, the interception takes place at 172 s. 

C. SUMMARY 
In this section, we investigate the basic requirements for the MTT algorithm and 

the KV. Target discrimination and initialization are addressed; they are assumed to be 

aided by the IR sensors. The correlation is implemented using ellipsoidal gating; the as-

sociation is realized using a PDAF-type sub-optimal Bayesian algorithm. For these pur-

poses, two new functions are developed that work concurrently. The fusion is imple-

mented using an inverse of the trace of the state covariance matrix within the mesh.m (see 

Appendix B) function. 
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For the KV, the evolution is summarized. The type and specification of the on-

board sensor are given. The kill requirement is explained and the results of the KV simu-

lation are explained. The best results for the delayed launch are acquired when we use 

decreased burn time. 
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V. CONCLUSION 

A. SUMMARY OF THE WORK 
In this thesis, we investigated the effect of EAs on the RF sensors within a boost-

phase ballistic missile defense system. The methods to alleviate these attacks in a multi-

target, multi-sensor scenario were also addressed.  

The EA types that might be used against the RF sensors of the boost-phase ballis-

tic missile defense system were presented. The RCS reduction, the chaff, deceptive jam-

ming, and expendable decoys were described in detail. We used simulations to show that 

RCS reduction and deceptive jamming are the major methods that degrade the perform-

ance of the interceptor, while chaff and decoys are not as practical.  

Because the EA effect is so intense that we investigated a new way to mitigate it. 

A fusion algorithm based on Kalman filter was developed to minimize the effect. Kal-

man-based and the Bayesian-based fusion algorithms were compared. Although the pro-

posed fusion algorithm can easily deal with individual EA techniques, a combined attack 

of all considered EA methods in a sequential way degraded the performance signifi-

cantly. 

The MTT and the KV were studied using the simulation. A multi-target multi-

sensor environment was simulated, using two target/interceptor pairs and three RF sen-

sors. Correlation was implemented with an ellipsoidal gating, and association was real-

ized using a probabilistic data association type algorithm. The nonlinear triangulation was 

resolved using a nonlinear measurement function. The kill vehicle endgame was simu-

lated by altering the data matrix of the interceptor. A delayed-time interceptor was also 

simulated. A delayed launch of the interceptor or use of the PN algorithm increases the 

miss distance, even if the tracking is perfect. To enhance the interception performance, 

the weight of the KV was reduced to 250 kg and the interceptor burn-out time was re-

duced to162 s. This resulted in a 172-s interception performance with a 35-s-delayed-

launch, just 8 s less than the target burn-out time, and a 10-m miss distance.  
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B. SIGNIFICANT RESULTS 
We have used a 3D multi-target, multi-sensor simulation to evaluate the boost-

phase ballistic missile defense system. The following significant results were obtained. 

The RF sensor is very vulnerable to any EA that might be used. Deception jam-

ming forces the radar to use angle-only measurements while the RCS reduction increases 

the standard deviation of the measurement error. Decoys and the chaff lure the radar to-

ward them, but are not practical. 

The MTT algorithm has the capacity to eliminate EA effects if designed properly. 

If the RF sensor probability of detection is not equal to unity, the MTT algorithm loses 

the track, since the target in question has a high acceleration capacity.  

The simulation results show that the closest the KV can get to the ICBM target is 

5 m for all cases. Because a hit-to-kill requires a miss distance of less than the smallest 

dimension of the target (2.6 m in the simulation), the hit-to-kill approach is not applicable 

to the boost-phase ballistic missile defense system, which may be attributed to the high 

target acceleration. 

C. SUGGESTIONS FOR FUTURE WORK 
In this work, a multi-target, multi-sensor scenario was investigated. The consid-

ered sensors were all the same type. Because of this, target discrimination and track ini-

tialization were addressed but not implemented in the simulation. In a future study, the 

passive IR sensor, discrimination and initiation issues may be investigated.  

In this thesis, the KV was investigated only for the endgame stage. In a future 

study, a full-scale KV model with a more advanced guidance algorithm may be devel-

oped. For this study, we worked with the point mass as the targets and the interceptors. 

An extended body version should be implemented in a future effort. 
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APPENDIX A. CODE FLOWCHART 

This appendix includes the flowchart of the main simulation of the MATLAB® 

code. The flowchart can be used with the code listed in Appendix B and “Read Me” in 

Appendix C to understand and modify the code for future use. 

 

Figure A-1 Flowchart-- data start-up (1 of 8) 



114 
 

 

 
Figure A-2 Flowchart-- data start-up cont’  (2 of 8) 
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Figure A-3 Flowchart-- first target motion (3 of 8) 
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Figure A-4 Flowchart-- second target motion (4 of 8) 
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Figure A-5 Flowchart-- measurement and MTT (5 of 8) 
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Figure A-6 Flowchart-- first interceptor motion (6 of 8) 
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Figure A-7 Flowchart-- second interceptor motion (7 of 8) 
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Figure A-8 Flowchart-- finalize the simulation (8 of 8) 
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APPENDIX B. MATLAB® CODE 

This appendix includes a full copy of the simulation and the subroutines of the 

MATLAB® code. All subroutines are written in order of appearance. 

A. MULTITARGET3D ( )- (MAIN SIMULATION) 
% MultiTarget3D Simulation for 
% Multi-Target Multi-Sensor Multi-stage Boosting Boost-phase Interception 
% APR 2005, Monterey, CA 
% K.Yildiz, Prof. P.E. Pace, Prof. M.Tummala 
  
clear;clc;  
tic;            % Calculate Run time 
global RCS1X RCS1X_R txDelay  maxG navCoefM SSM1 SSM2 stateM1 stateM2 timeFlags... 
       Vcfirst updateTime; 
  
%------------------------------------------------------------------------------- 
%% Constants 
Re = 6.37e6;             % Radius of the Earth (m) 
G = 6.67e-11;            % Gravitational Constant (m^3/s^2.kg) 
Me = 5.98e24;            % Earth's Mass (kg) 
SOL = 299792458;         % Speed of light (m/s) 
posEC = [0; 0; 0];       % Position of Earth's Center 
SMALL = -1e-6;           % An arbitrary small number for comparisons 
BIG = 1e6;               % An arbitrary big number for comparisons 
Hp = [1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0];      % The position observation matrix 
Hv = [0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1];      % velocity observation matrix 
   
%% Time variable 
farTimeStep = 0.05;      % Integration Time Step at Interception Phase(s) 
nearTimeStep = 0.0005;   % Integration Time Step at Terminal Phase(s)  
timeStepSwitch = 5000;   % Distance to Switch Time Step (m) 
t1 = 0;                  % Independent first Interception Time (s) 
t2 = 0;                  % Independent second Interception Time (s) 
t = [t1,t2];             % Simulation Time (s) 
dt1 = 0.05;              % First interception time step (s) 
dt2 = 0.05;              % Second interception time step (s) 
dt = [dt1,dt2];          % Simulation Time Step (s) 
updateTime_1 =... 
    farTimeStep*1;       % Sensor Update Interval (s) 
updateTime_2 =... 
    farTimeStep*1;       % Sensor Update Interval (s) 
updateTime = [updateTime_1, updateTime_2]; 
txDelay1 = 10e-3;        % First interception Transmission delay (s) 
txDelay2 = 10e-3;        % Second interception Transmission delay (s) 
txDelay = [txDelay1, txDelay1]; 
txCounter_1 = 0;         % First interception data Update counter 
txCounter_2 = 0;         % Second interception data Update counter 
txCounter = [txCounter_1, txCounter_2]; 
  
%% Flags 
kill_launch = [1 1];     % Launching Kill vehicle 
initializing = [1 1];    % JPDA Filter Initialization flags 
isDecoys = [0 0];        % Decoys launch flag 
isReduced = 0;           % Reduced RCS indication flag 
isJamming = 0;           % Jamming indication flag 
timeStepFlag = [1 1];    % Flag used to switch between time steps 
launch_flag = [1 1];     % For indicating the Interceptor launch 
Vcfirst = [1 1];         % Flag for setting the First Vc to zero 
txFlag_1 = 1;            % First interception Data Update flag 
txFlag_2 = 1;            % Second interception Data Update flag 
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txFlag = [1, 1]; 
timeFlags =  [t; 
              dt; 
              txFlag; 
              txCounter; 
              txDelay];  % Put All time flag into one 
  
%% Initialization of Parameters 
% Load Target RCS Data Use the X band radar 
load POstage1_X; RCS1XRaw = Sth;    % Stage-1, X-Band 
load RCS1X_R; RCS1X_RRaw = Sth;     % Stage-1, Reduced 
% Interpolate RCS Data for 0.1 degrees precision 
mAngleDegRaw = 0:360;        % Monostatic Angle Theta at Raw Data Precision 
mAngleDeg = 0:0.1:360;       % Monostatic Angle Theta after Interpolation 
RCS1X = interp1(mAngleDegRaw,... 
        RCS1XRaw, mAngleDeg);% Generate 0.1 deg precision RCS Matrix 
RCS1X_R = interp1(mAngleDegRaw,... 
      RCS1X_RRaw, mAngleDeg);% Generate 0.1 deg precision RCS Matrix 
%-------------------------------------------------------------------------- 
  
% Target- #1 
lAzT_1 = deg2rad(50.1);      % Target Launch Angle (Azimuth) (Radians)  
lElT_1 = deg2rad(84);        % Target Launch Angle (Elevation) (Radians)  
  
% Target (Located at Kilju Missile Base, N. Korea) 
% Position the target in Cartesian Coordinates.  
% The Target located at (N41'00” / E129'00”) 
posT_1 = geo2cart('41d00m00sN','129d00m00sE',Re); % Target Position Vector 
unitvT_1 = top2cart(lAzT_1, lElT_1,... 
                    '41d00m00sN', '129d00m00sE'); % Velocity Unit Vector 
pos0T_1 = posT_1;                                 % Target Initial Position             
lTimeT_1 = 0;                                     % Target Launch Time (s) 
lenT_1 = 21.8;                                    % Target Total Length (m) 
  
%Define Missile Data Matrices as Follows 
%                           Stage-1     Stage-2     ...     Stage-n 
%   Total Mass (lb)       [ X           X           ...     X 
%   Propellent Mass (lb)    X           X           ...     X 
%   Specific Impulse (s)    X           X           ...     X 
%   In-stage Burn Time (s)  X           X           ...     X ] 
%Following Rows are Added by the Program (Do not Define!) 
%   dM/dt                 [ X           X           ...     X 
%   Canister Mass (kg)      X           X           ...     X 
%   Ignition Time           X           X           ...     X 
%   Total Mass (kg)         X           X                   X ] 
  
%Generic 3-Stage Missile Data Matrix 
%               Stage-1     Stage-2     Stage-3     Payload 
dataMatrixT_1 = [ 108000      61000       17000       5000 
                  91800       51850       14450       0 
                  300         300         300         0 
                  60          60          60          1   ]; 
%Add dM/dt and Canister Weight Rows to Data Matrix 
dataMatrixT_1 = reformDataMatrix(dataMatrixT_1); 
MT_1 = sum(dataMatrixT_1(1,:)); %Target Initial Total Mass 
%-------------------------------------------------------------------------- 
  
% Target- #2 
lAzT_2 = deg2rad(50);    % Target Launch Angle (Azimuth) (Radians)  
lElT_2 = deg2rad(84);    % Target Launch Angle (Elevation) (Radians)  
  
% Target (Located at Ok'pyong Missile Base, N. Korea) 
% Position the target in Cartesian Coordinates.  
% The Target located at (N39'25” / E127'25”) 
posT_2 = geo2cart('39d25m00sN', '127d25m00sE', Re);% Target Position Vector 
pos0T_2 = posT_2;                                 % Target Initial Position 
unitvT_2 = top2cart(lAzT_2, lElT_2,... 
                    '39d25m00sN', '127d25m00sE'); % Velocity Unit Vector 
lTimeT_2 = 0;                                     % Target Launch Time (s) 
lenT_2 = 21.8;                                    % Target Total Length (m) 
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%Generic 3-Stage Missile Data Matrix 
%               Stage-1     Stage-2     Stage-3     Payload 
dataMatrixT_2 = [ 108000      61000       17000       5000 
                  91800       51850       14450       0 
                  300         300         300         0 
                  60          60          60          1   ]; 
%Add dM/dt and Canister Weight Rows to Data Matrix 
dataMatrixT_2 = reformDataMatrix(dataMatrixT_2); 
MT_2 = sum(dataMatrixT_2(1,:)); % Target Initial Total Mass 
% ------------------------------------------------------------------------- 
  
% Missile interceptor- #1 
lAzM_1 = deg2rad(298);    % Missile Launch Angle (Azimuth) (Radians) 
lElM_1 = deg2rad(79);     % Missile Launch Angle (Elevation) (Radians) 
  
%Missile (Located at Sea of Japan, 600km East of Target Launch Site) 
% Position the interceptor in Cartesian Coordinates.  
% The missile located at (N41'00” / E136'07”)  
posM_1 = geo2cart('41d00m00sN', '136d07m30sE', Re);% Missile Position Vector 
pos0M_1 = posM_1;                                % Missile Initial Position 
unitvM_1 = top2cart(lAzM_1, lElM_1,... 
                   '41d00m00sN', '136d07m30sE'); % Velocity Unit Vector 
lTimeM_1 = lTimeT_1 + 35;                        % Missile Launch Time (s)  
lenM_1 = 21.8;                                   % Missile Total Length (m) 
  
%Generic 3-Stage Interceptor Data Matrix use the Generic Missile GM3 
dataMatrixM_1 = [ 108000      61000       17000       500 
                  102600      57950       16150       200 
                  300         300         300         300 
                  54          54          54          4]; 
%Add dM/dt and Canister Weight Rows to Data Matrix 
dataMatrixM_1 = reformDataMatrix(dataMatrixM_1); 
MM_1 = sum(dataMatrixM_1(1,:));                % Missile Initial Total Mass 
% ------------------------------------------------------------------------- 
  
% Missile interceptor- #2 
lAzM_2 = deg2rad(298);    % Missile Launch Angle (Azimuth) (Radians) 
lElM_2 = deg2rad(79);     % Missile Launch Angle (Elevation) (Radians) 
  
%Missile (Located at Sea of Japan, 600km East of Target Launch Site) 
% Position the interceptor in Cartesian Coordinates.  
% The missile located at (N39'25” / E134'21”) 
posM_2 = geo2cart('39d26m00sN', '134d21m30sE', Re);% Missile Position Vector 
pos0M_2 = posM_2;                                % Missile Initial Position 
unitvM_2 = top2cart(lAzM_2, lElM_2,... 
                    '39d26m00sN', '134d21m30sE');% Velocity Unit Vector 
lTimeM_2 = lTimeT_2 + 35;                        % Missile Launch Time (s)  
lenM_2 = 21.8;                                   % Missile Total Length (m) 
  
%Generic 3-Stage Interceptor Data Matrix use the Generic Missile GM3 
dataMatrixM_2 = [ 108000      61000       17000       500 
                  102600      57950       16150       0 
                  300         300         300         300 
                  54          54          54          4]; 
  
%Add dM/dt and Canister Weight Rows to Data Matrix 
dataMatrixM_2 = reformDataMatrix(dataMatrixM_2); 
MM_2 = sum(dataMatrixM_2(1,:)); %Missile Initial Total Mass 
%-------------------------------------------------------------------------- 
  
% Navigation parameter for the interceptors 
navCoefM = [4 4];        % Missile Navigation Coefficient for Proportional 
                         % Navigation (Either 3, 4 or 5) 
maxG = [10 10];          % Max Lateral Acceleration Command (g) 
  
%Define Control System Dynamics Transfer Function 
%                       1 
%           ------------------------- 
%           as^n+ ... + bs^2 + cs + 1 
TMc = 5;                                       % System Time Constant 
numTFM = 1;                                    % Numerator 
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denTFM = [(TMc^3/27) (TMc^2/3) TMc 1];         % Denominator (3rd Order TF) 
sysTFM = tf(numTFM, denTFM);   % Generate Transfer Function From Parameters 
sysdTFMFar = c2d(sysTFM,farTimeStep);          % Discretize System (Far) 
sysdTFMNear = c2d(sysTFM,nearTimeStep);        % Discretize System (Near) 
% Convert Transfer Function to State Space (Far) 
[AMFar,BMFar,CMFar,DMFar] = ssdata(sysdTFMFar); 
% Convert Transfer Function to State Space (Near) 
[AMNear,BMNear,CMNear,DMNear] = ssdata(sysdTFMNear); 
% Put this matrix in one, to use separate it 
SSMfar = [AMFar,BMFar,CMFar',[DMFar;0;0]];               
SSMnear = [AMNear,BMNear,CMNear',[DMNear;0;0]]; 
%-------------------------------------------------------------------------- 
  
%Various Computations 
g0 = (G * Me) / (Re ^ 2);   %Gravitational Acceleration at Sea Level 
%-------------------------------------------------------------------------- 
  
% RF-1 (125 degrees 600 km from Target Launch Site, Sea of Japan) 
% The RF-1 located at (N37'46” / E134'35”) 
posRF1 = geo2cart('40d21m00sN', '134d34m35sE', Re);  % RF-1 Position Vector 
  
% RF-2 (135 degrees 600 km from Target Launch Site, Sea of Japan) 
% The RF-2 located at (N37'05” / E133'46”) 
posRF2 = geo2cart('43d34m00sN', '135d46m00sE', Re);  % RF-2 Position Vector 
  
%RF-3 ( Sea of Japan) 
% The RF-3 located at (N39'35” / E130'46”) 
posRF3 = geo2cart('39d35m00sN', '130d46m00sE', Re);  % RF-3 Position Vector 
%-------------------------------------------------------------------------- 
  
% Decoy for Target- #1 
posD_1 = posT_1;                             % Decoy Position Vector 
lTimeD_1 = lTimeT_1 + 90;                    % Decoy Release Time (s) 
unitvD_1 = unitvT_1;                         % Velocity Unit Vector 
  
% Decoy for Target- #2 
posD_2 = posT_2;                             % Decoy Position Vector 
lTimeD_2 = lTimeT_2 + 90;                    % Decoy Release Time (s) 
unitvD_2 = unitvT_2;                         % Velocity Unit Vector 
% ------------------------------------------------------------------------- 
  
% Jammer on the Target-1 and Target-2 
% Position = Current Position of target 
PtJ = 1e3  ;                                 % Jammer Power (W) 
deltaFJ = 4e9;                               % Jammer Bandwidth (Hz) 
%-------------------------------------------------------------------------- 
  
%% Simulation Start the variable 
disp(' ');                              % Display a blank line 
%Target-1 
stageT_1 = 1;                           % Target Stage 
stageChangeTimeT_1 = ... 
    dataMatrixT_1(7, stageT_1 + 1);     % Target Next Stage Change Time (s) 
ISPT_1 = dataMatrixT_1(3, stageT_1);    % Target Stage Specific Impulse (s) 
dMdtT_1 = dataMatrixT_1(5, stageT_1);   % Target Stage dM/dT (kg/s) 
hT_1 = 0;                               % Target Height (m) 
aT_1 = [0; 0; 0];                       % Target Acceleration Vector 
magTT_1 = dMdtT_1 * g0 * ISPT_1;        % Target Stage Sea Level Thrust (N) 
magvT_1 = (magTT_1 - MT_1 * g0) /... 
    MT_1 * (lenT_1 * MT_1/... 
    (magTT_1 - MT_1 * g0)) ^ (1 / 2);   % Target Silo Exit Velocity (m/s) 
vT_1 = magvT_1 .* unitvT_1;             % Target Velocity Vector 
groundTrackT_1 = posT_1;                % Target Ground Track Vector 
oldGroundTrackT_1 = groundTrackT_1;     % Target Old Ground Track 
distT_1 = 0;                            % Target Ground Distance (m) 
mnvrT_1 = 0;                            % Target Maneuver (g) 
sensedPosT_1 = posT_1;                  % Target Sensed Position Vector 
poserror_1 = 0;                         % Initial position error 
xT_1 = [posT_1;vT_1];                   % State vector of ICBM 
  
%Target-2 
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stageT_2 = 1;                           % Target Stage 
stageChangeTimeT_2 =... 
    dataMatrixT_2(7, stageT_2 + 1);     % Target Next Stage Change Time (s) 
ISPT_2 = dataMatrixT_2(3, stageT_2);    % Target Stage Specific Impulse (s) 
dMdtT_2 = dataMatrixT_2(5, stageT_2);   % Target Stage dM/dT (kg/s) 
hT_2 = 0;                               % Target Height (m) 
aT_2 = [0; 0; 0];                       % Target Acceleration Vector 
magTT_2 = dMdtT_2 * g0 * ISPT_2;        % Target Stage Sea Level Thrust (N) 
magvT_2 = (magTT_2 - MT_2 * g0) /... 
    MT_2 * (lenT_2 * MT_2/... 
    (magTT_2 - MT_2 * g0)) ^ (1 / 2);   % Target Silo Exit Velocity (m/s) 
vT_2 = magvT_2 .* unitvT_2;             % Target Velocity Vector 
groundTrackT_2 = posT_2;                % Target Ground Track Vector 
oldGroundTrackT_2 = groundTrackT_2;     % Target Old Ground Track 
distT_2 = 0;                            % Target Ground Distance (m) 
mnvrT_2 = 0;                            % Target Maneuver (g) 
sensedPosT_2 = posT_2;                  % Target Sensed Position Vector 
poserror_2 = 0;                         % Initial position error 
xT_2 = [posT_2;vT_2];                   % State-Space matrix of ICBM 
%-------------------------------------------------------------------------- 
  
%Missile interceptor- #1 
stageM_1 = 1;                           % Missile Stage 
stageChangeTimeM_1 =... 
    dataMatrixM_1(7, stageM_1 + 1);     % Missile Next Stage Change Time(s) 
ISPM_1 = dataMatrixM_1(3, stageM_1);    % Missile Stage Specific Impulse(s) 
dMdtM_1 = dataMatrixM_1(5, stageM_1);   % Missile Stage dM/dT (kg/s) 
hM_1 = 0;                               % Missile Height (m) 
aM_1 = [0; 0; 0];                       % Missile Acceleration Vector 
gM_1 = g0;                              % Missile gravitational Acc. 
magTM_1 = dMdtM_1 * g0 * ISPM_1;        % Missile Stage Sea Level Thrust (N) 
magvM_1 = (magTM_1 - MM_1 * g0) /... 
    MM_1 * (lenM_1 * MM_1/... 
    (magTM_1 - MM_1 * g0)) ^ (1 / 2);   % Missile Silo Exit Velocity (m/s) 
vM_1 = magvM_1 .* unitvM_1;             % Missile Velocity Vector 
groundTrackM_1 = posM_1;                % Missile Ground Track Vector 
oldGroundTrackM_1 = groundTrackM_1;     % Missile initial ground track 
distM_1 = 0;                            % Missile Ground Distance (m) 
GFM_1 = [0;0;0];                        % Missile Guidance Force (N) 
comLatAccM_1 = 0;                       % Commanded Lateral Acceleration (g) 
achLatAccM_1 = 0;                       % Achieved Lateral Acceleration (g) 
latDivM_1 = 0;                          % Missile Lateral Divert (m/s) 
nlM_1 = [0; 0; 0];                      % Achieved Lateral Acceleration  
SSM1  = SSMfar;                         % State Space matrix for interceptor #1 
stateM1 = [0 0 0;                       % Initial StateMx 
           0 0 0;                       % Initial StateMy 
           0 0 0];                      % Initial StateMz  
magGFM_1 = 0;                           % Magnitude of Guidance Force (N) 
magncM_1 = 0;                           % Magnitude of the lat. acc. 
xM_1 = [posM_1;vM_1];                    % State-Space matrix of Interceptor 
  
%Missile interceptor-2 
stageM_2 = 1;                           % Missile Stage 
stageChangeTimeM_2 =... 
    dataMatrixM_2(7, stageM_2 + 1);     % Missile Next Stage Change Time(s) 
ISPM_2 = dataMatrixM_2(3, stageM_2);    % Missile Stage Specific Impulse(s) 
dMdtM_2 = dataMatrixM_2(5, stageM_2);   % Missile Stage dM/dT (kg/s) 
hM_2 = 0;                               % Missile Height (m) 
aM_2 = [0; 0; 0];                       % Missile Acceleration Vector 
gM_2 = g0;                              % Gravitational Acceleration 
magTM_2 = dMdtM_2 * g0 * ISPM_2;        % Missile Stage Sea Level Thrust(N) 
magvM_2 = (magTM_2 - MM_2 * g0) /... 
    MM_2 * (lenM_2 * MM_2/... 
    (magTM_2 - MM_2 * g0)) ^ (1 / 2);   % Missile Silo Exit Velocity (m/s) 
vM_2 = magvM_2 .* unitvM_2;             % Missile Velocity Vector 
groundTrackM_2 = posM_2;                % Missile Ground Track Vector 
oldGroundTrackM_2 = groundTrackM_2;     % Missile initial ground track 
distM_2 = 0;                            % Missile Ground Distance (m) 
GFM_2 = [0;0;0];                        % Missile Guidance Force (N) 
comLatAccM_2 = 0;                       % Commanded Lateral Acceleration (g) 
achLatAccM_2 = 0;                       % Achieved Lateral Acceleration (g) 
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latDivM_2 = 0;                          % Missile Lateral Divert (m/s) 
nlM_2 = [0; 0; 0];                      % Achieved Lateral Acceleration  
SSM2  = SSMfar;                         % State Space matrix for interceptor #2 
stateM2 = [0 0 0;                       % Initial StateMx 
           0 0 0;                       % Initial StateMy 
           0 0 0];                      % Initial StateMz 
magGFM_2 = 0;                           % Magnitude of Guidance Force (N) 
magncM_2 = 0;                           % Magnitude of the lat. acc. 
xM_2 = [posM_2;vM_2];                   % State-Space matrix of Interceptor 
%-------------------------------------------------------------------------- 
  
%Decoy for target- #1 
hD_1 = 0;                               % Decoy Height (m) 
magvD_1 = magvT_1;                      % Decoy Initial Velocity (m/s) 
vD_1 = magvD_1 .* unitvD_1;             % Decoy Velocity Vector 
groundTrackD_1 = posD_1;                % Decoy Ground Track Vector 
distD_1 = 0;                            % Decoy Ground Distance (m) 
oldGroundTrackD_1 = posT_1;             % Decoy previous ground track 
xD1 = [posD_1; vD_1];                   % State-space Matrix of decoy-1 
  
%Target-Decoy 
distTD_1 = 0;                           % Target-Decoy Distance 
  
%Decoy for target-2 
hD_2 = 0;                               % Decoy Height (m) 
magvD_2 = magvT_2;                      % Decoy Initial Velocity (m/s) 
vD_2 = magvD_2 .* unitvD_2;             % Decoy Velocity Vector 
groundTrackD_2 = posD_2;                % Decoy Ground Track Vector 
distD_2 = 0;                            % Decoy Ground Distance (m) 
oldGroundTrackD_2 = posT_2;             % Decoy previous ground track 
xD2 = [posD_2; vD_2];                   % State-space Matrix of decoy-1 
  
%Target-Decoy 
distTD_2 = 0;                           % Target-Decoy Distance 
%-------------------------------------------------------------------------- 
  
%Missile-#1--->Target-#1 
VcMT_1 = 0;               % Missile-to-Target Sensed Closing Velocity (m/s) 
VcMTTrue_1 = 0;           % Missile-to-Target True Closing Velocity (m/s) 
distMT_1 = magnitude(posT_1 - posM_1);% Missile-to-Target Distance (m) 
oldDistMTTrue_1 = 0;      % Previous True Missile-to-Target Distance (m) 
oldLOSMT_1 = posT_1 - posM_1;% Previous Line of Sight (LOS) 
oldDistMT_1 = magnitude(oldLOSMT_1);% Previous Target-Missile Distance 
  
%Missile-#2--->Target-#2 
VcMT_2 = 0;               % Missile-to-Target Sensed Closing Velocity (m/s) 
VcMTTrue_2 = 0;           % Missile-to-Target True Closing Velocity (m/s) 
distMT_2 = magnitude(posT_2 - posM_2);% Missile-to-Target Distance (m) 
oldDistMTTrue_2 = 0;      % Previous True Missile-to-Target Distance (m) 
oldLOSMT_2 = posT_2 - posM_2;% Previous Line of Sight (LOS)  
oldDistMT_2 = magnitude(oldLOSMT_2);% Previous Target-Missile Distance 
%-------------------------------------------------------------------------- 
  
%% Data Recording Arrays 
tArray_1   = [];               % Simulation Time for plot Interception-#1 
tArray_2   = [];               % Simulation Time for plot Interception-#2 
%-------------------------------------------------------------------------- 
  
%Target-#1 
posArrayT_1 = [];              % Target Position 
sensedPosArrayT_1 = [];        % Sensed Target Position 
trackingError_1 = [];          % Tracking position error 
groundTrackArrayT_1 = [];      % Target Ground Track 
distArrayT_1 = [];             % Target Ground Distance Array 
hArrayT_1  = [];               % Target Height (m) 
vArrayT_1  = [];               % Target Velocity (m/s) 
stageArrayT_1 = [];            % Target Stage 
massArrayT_1 = [];             % Target Total Mass 
mnvrArrayT_1 = [];             % Target Maneuver 
  
%Target-#2 
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posArrayT_2 = [];              % Target Position 
sensedPosArrayT_2 = [];        % Sensed Target Position 
trackingError_2 = [];          % Tracking position error 
groundTrackArrayT_2 = [];      % Target Ground Track 
distArrayT_2 = [];             % Target Ground Distance Array 
hArrayT_2  = [];               % Target Height (m) 
vArrayT_2  = [];               % Target Velocity (m/s) 
stageArrayT_2 = [];            % Target Stage 
massArrayT_2 = [];             % Target Total Mass 
mnvrArrayT_2 = [];             % Target Maneuver 
%-------------------------------------------------------------------------- 
  
%Missile-#1 
posArrayM_1 = [];              % Missile Position 
groundTrackArrayM_1 = [];      % Missile Ground Track 
distArrayM_1 = [];             % Missile Ground Distance Array 
hArrayM_1  = [];               % Missile Height (m) 
vArrayM_1  = [];               % Missile Velocity (m/s) 
stageArrayM_1 = [];            % Missile Stage 
massArrayM_1 = [];             % Missile Total Mass 
comLatAccArrayM_1 = [];        % Commanded Missile Lateral Acceleration (G) 
achLatAccArrayM_1 = [];        % Achieved Missile Lateral Acceleration (G) 
latDivArrayM_1 = [];           % Missile Lateral Divert (m/s) 
  
%Missile-2 
posArrayM_2 = [];              % Missile Position 
groundTrackArrayM_2 = [];      % Missile Ground Track 
distArrayM_2 = [];             % Missile Ground Distance Array 
hArrayM_2  = [];               % Missile Height (m) 
vArrayM_2  = [];               % Missile Velocity (m/s) 
stageArrayM_2 = [];            % Missile Stage 
massArrayM_2 = [];             % Missile Total Mass 
comLatAccArrayM_2 = [];        % Commanded Missile Lateral Acceleration (G) 
achLatAccArrayM_2 = [];        % Achieved Missile Lateral Acceleration (G) 
latDivArrayM_2 = [];           % Missile Lateral Divert (m/s) 
%-------------------------------------------------------------------------- 
  
%Decoy for Target-#1 
posArrayD_1 = [];              % Decoy Position 
groundTrackArrayD_1 = [];      % Decoy Ground Track 
distArrayD_1 = [];             % Decoy Ground Distance Array 
hArrayD_1  = [];               % Decoy Height (m) 
vArrayD_1  = [];               % Decoy Velocity (m/s) 
  
%Target-Decoy 
distTDArray_1 = [];            % Target---> Decoy distance 
  
%Decoy for Target-#2 
posArrayD_2 = [];              % Decoy Position 
groundTrackArrayD_2 = [];      % Decoy Ground Track 
distArrayD_2 = [];             % Decoy Ground Distance Array 
hArrayD_2  = [];               % Decoy Height (m) 
vArrayD_2  = [];               % Decoy Velocity (m/s) 
  
%Target-Decoy 
distTDArray_2 = [];            % Target---> Decoy distance 
%-------------------------------------------------------------------------- 
  
%Missile-1_Target-1 
distArrayMT_1 = [];            % Missile-Target Distance 
VcArrayMT_1 = [];              % Missile-Target Closing Velocity 
  
%Missile-2_-Target- 
distArrayMT_2 = [];            % Missile-Target Distance 
VcArrayMT_2 = [];              % Missile-Target Closing Velocity 
  
% Measurement and PDAF filter  
targets = [];                  % Measurement empty tray 
decoys = [];                   % Empty measurement tray 
states = [];                   % Empty filter array 
Ps = [];                       % Empty filter array 
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Fs = [];                       % Empty filter array 
  
%% Simulation start here 
while ((hT_1 >= SMALL) || (hM_1 >= SMALL)) && ((VcMT_1 >= 0)) ||... 
      ((hT_2 >= SMALL) || (hM_2 >= SMALL)) && ((VcMT_2 >= 0))% Main loop 
     
%% Target #1 motion 
    if (t(1) >= lTimeT_1) &&((hT_1 >= SMALL) ||... 
       (hM_1 >= SMALL)) && ((VcMT_1 >= 0)) % First intercepting 
        % Initialize the Filter. By Assumption track is initializing by the 
        % help of IR sensor 
        if initializing(1) 
            covi = [10;10;10;1;1;1];    % Initialization error 
            x1ii = xT_1 + randn(size(covi)).*covi; % Initialize with SWAG  
            states = [states, x1ii]; 
            Ps = [Ps, 10*diag(covi.^2)];% Initial state covariance 
            initializing(1) = 0;        % Do not enter again 
        end 
        % Check for time step to change state space matrices 
        if (distMT_1 <= timeStepSwitch) && timeStepFlag(1) && (t(1) > dt(1))       
            dt(1) = nearTimeStep;  % Change Time steps for precision             
            timeStepFlag(1) = 0;   % Reset Flag not to Enter Here Again 
        end %if (distMT_1 <= timeStepSwitch) & timeStepFlag(1) & (t > dt) 
        % When Target Launched (Target Computations) 
        if (t(1) >= lTimeT_1) &&  (hT_1 >= SMALL)  
            %Handle Target Stage Change Computations. Get new value 
            if t(1) >= (stageChangeTimeT_1 + lTimeT_1) 
                % Display Data on stage change 
                disp(['Target #1 Stage-', num2str(stageT_1),... 
                    ' Burnout: Speed = ', num2str(magnitude(vT_1)/1000),... 
                    ' km/s, Altitude= ',  num2str(hT_1 / 1000), ' km.']); 
                disp(['Target #1 and Interceptor #1 distance= ',... 
                                          num2str(distMT_1/1000), ' km.']); 
                disp(' '); 
                stageT_1 = stageT_1 + 1;            % Increase Stage 
                if stageT_1 >= size(dataMatrixT_1,2)% If No Next Stage 
                    stageChangeTimeT_1 = BIG;               
                else 
                    % Set Next Stage Change Time 
                    stageChangeTimeT_1 = ... 
                        dataMatrixT_1(7, stageT_1 + 1); 
                end 
            end 
            poserror_1 = magnitude(Hp*(xT_1-states(:,1)));   % Position error 
            % Move the Target #1 
            [F1, xT_1, hT_1, MT_1, posT_1, vT_1, aT_1, gT_1,... 
            groundTrackT_1, oldGroundTrackT_1, distT_1, dataMatrixT_1] =... 
                moveICBM(dt(1), xT_1, dataMatrixT_1, stageT_1,... 
                          oldGroundTrackT_1, distT_1); 
        end %(t >= lTimeT_1) &  (hT_1 >= SMALL) (When Target Launched) 
        % Move Decoy 
        if t(1) >= lTimeD_1 
            [xD1, hD_1, posD_1, vD_1, groundTrackD_1, oldGroundTrackD_1,... 
                distD_1, distTD_1] =... 
            moveDecoys(dt(1), xD1, posT_1, distD_1, oldGroundTrackD_1); 
            isDecoys(1) = 1; 
        else    % If decoy does not released, then the same as ICBM 
           xD1 = xT_1;                          % Decoys State 
           posD_1 = Hp*xT_1;                    % Decoys position 
           vD_1 = Hv*xT_1;                      % Decoys velocity 
           hD_1 = hT_1;                         % decoys altitude 
           groundTrackD_1 = groundTrackT_1;     % Decoys Ground track 
           oldGroundTrackD_1 = groundTrackT_1;  % Decoys Old Ground Track 
           distD_1 = distT_1;                   % Decoys range  
           distTD_1 = 0;                        % Decoy --> UCBM Distance 
        end 
         
        % Record Data 
        tArray_1 = [tArray_1 t(1)];             % Simulation time 
        % Target 
        posArrayT_1 = [posArrayT_1 posT_1];     % Target position 
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        sensedPosArrayT_1 = ... 
            [sensedPosArrayT_1 sensedPosT_1];   % Sensed target position 
        trackingError_1 =... 
            [trackingError_1 poserror_1];       % Position error   
        hArrayT_1 = [hArrayT_1 hT_1];           % Target height 
        groundTrackArrayT_1 =... 
            [groundTrackArrayT_1 groundTrackT_1];% Target ground track 
        distArrayT_1 = [distArrayT_1 distT_1];   % Target downrange 
        vArrayT_1 = [vArrayT_1 magnitude(vT_1)]; % Target velocity 
        stageArrayT_1 = [stageArrayT_1 stageT_1];% Target stage 
        massArrayT_1 = [massArrayT_1 MT_1];      % Target mass 
        mnvrArrayT_1 = [mnvrArrayT_1 mnvrT_1];   % Target maneuver 
        %Missile 
        posArrayM_1 = [posArrayM_1 posM_1];      % Missile position 
        hArrayM_1 = [hArrayM_1 hM_1];            % Missile height 
        groundTrackArrayM_1 =... 
            [groundTrackArrayM_1 groundTrackM_1];% Missile ground track 
        distArrayM_1 = [distArrayM_1 distM_1];   % Missile downrange 
        vArrayM_1 = [vArrayM_1 magnitude(vM_1)]; % Missile velocity 
        stageArrayM_1 = [stageArrayM_1 stageM_1];% Missile stage 
        massArrayM_1 = [massArrayM_1 MM_1];      % Missile Mass 
        comLatAccArrayM_1 =... 
            [comLatAccArrayM_1 comLatAccM_1];    % Commanded lat. acc. 
        achLatAccArrayM_1 =... 
            [achLatAccArrayM_1 achLatAccM_1];    % Achieved lat. acc. 
        latDivArrayM_1 = [latDivArrayM_1 latDivM_1];% .Lateral divert 
        %Decoy 
        posArrayD_1 = [posArrayD_1 posD_1];      % Decoy position 
        hArrayD_1 = [hArrayD_1 hD_1];            % Decoy height 
        groundTrackArrayD_1 =... 
            [groundTrackArrayD_1 groundTrackD_1];% Decoy ground track 
        distArrayD_1 = [distArrayD_1 distD_1];   % Decoy downrange 
        vArrayD_1 = [vArrayD_1 magnitude(vD_1)]; % Decoy velocity 
        %Target-Decoy 
        distTDArray_1 = [distTDArray_1 distTD_1];% Target-Decoy distance 
        %Missile-Target 
        distArrayMT_1 = [distArrayMT_1 distMT_1];% Missile-target distance 
        VcArrayMT_1 = [VcArrayMT_1 VcMT_1];      % Closing velocity  
    end 
%% Target #2 motion 
    if (t(2) >= lTimeT_2) && ((hT_2 >= SMALL) ||... 
       (hM_2 >= SMALL)) && ((VcMT_2 >= 0))  % First intercepting 
        % Initialize the Filter. By Assumption track is initializing by the 
        % help of IR sensor 
        if initializing(2) 
            covi = [10;10;10;1;1;1];         % Initialization error 
            x2ii = xT_2 + randn(size(covi)).*covi; % Star with SWAG 
            states = [states, x2ii]; 
            Ps = [Ps, 10*diag(covi.^2)] ;    % Initialize with big inaccuracy 
            initializing(2) = 0;             % Do not initialize again 
        end 
        % Check for time step to change state space matrices 
        if (distMT_2 <= timeStepSwitch) && timeStepFlag(2) && (t(2) > dt(2))       
            dt(2) = nearTimeStep;  % Change Time steps for precision             
            timeStepFlag(2) = 0;   % Reset Flag not to Enter Here Again 
        end %if (distMT_2 <= timeStepSwitch) & timeStepFlag(2) & (t > dt) 
        % When Target Launched (Target Computations) 
        if (t(2) >= lTimeT_2) &&  (hT_2 >= SMALL)  
            %Handle Target Stage Change Computations. Get new value 
            if t(2) >= (stageChangeTimeT_2 + lTimeT_2) 
                % Display Data on stage change 
                disp(['Target #2 Stage-', num2str(stageT_2),... 
                    ' Burnout: Speed = ', num2str(magnitude(vT_2)/1000),... 
                    ' km/s, Altitude= ',  num2str(hT_2 / 1000) ' km.']); 
                disp(['Target #2 and Interceptor #2 distance = '...  
                                          num2str(distMT_2/1000), ' km.']); 
                disp(' '); 
                stageT_2 = stageT_2 + 1;                   % Increase Stage 
                if stageT_2 >= size(dataMatrixT_2,2)       % If No Next Stage 
                    stageChangeTimeT_2 = BIG;               
                else 
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                    stageChangeTimeT_2 = ... 
                          dataMatrixT_2(7, stageT_2 + 1); % Set Next  
                end 
            end 
            poserror_2 = magnitude(Hp*(xT_2-states(:,2)));   % Position error 
            % Move the ICBM 
            [F2, xT_2, hT_2, MT_2, posT_2, vT_2, aT_2, gT_2,... 
            groundTrackT_2, oldGroundTrackT_2, distT_2, dataMatrixT_2] =... 
                moveICBM(dt(2), xT_2, dataMatrixT_2, stageT_2, ... 
                         oldGroundTrackT_2, distT_2); 
        end %(t >= lTimeT_1) &  (hT_1 >= SMALL) (When Target Launched) 
        if t(2) >= lTimeD_2 
            [xD2, hD_2, posD_2, vD_2, groundTrackD_2, oldGroundTrackD_2,... 
                distD_2, distTD_2] =... 
                moveDecoys(dt(2), xD2, posT_2, distD_2, oldGroundTrackD_2); 
            isDecoys(2) = 1; 
        else    % If decoy does not released, then everything equals to ICBM 
           xD2 = xT_2;                          % Decoys State 
           posD_2 = Hp*xT_2;                    % Decoys position 
           vD_2 = Hv*xT_2;                      % Decoys velocity 
           hD_2 = hT_2;                         % decoys altitude 
           groundTrackD_2 = groundTrackT_2;     % Decoys Ground track 
           oldGroundTrackD_2 = groundTrackT_2;  % Decoys Old Ground Track 
           distD_2 = distT_2;                   % Decoys range  
           distTD_2 = 0;                        % Decoy --> ICBM Distance 
        end 
  
        %Record Data 
        tArray_2 = [tArray_2 t(2)];             % Simulation time 
        %Target 
        posArrayT_2 = [posArrayT_2 posT_2];     % Target position 
        sensedPosArrayT_2 =... 
            [sensedPosArrayT_2 sensedPosT_2];   % Sensed target position 
        trackingError_2 =... 
            [trackingError_2 poserror_2];       % Position error  
        hArrayT_2 = [hArrayT_2 hT_2];           % Target height 
        groundTrackArrayT_2 =... 
            [groundTrackArrayT_2 groundTrackT_2];% Target ground track 
        distArrayT_2 = [distArrayT_2 distT_2];   % Target downrange 
        vArrayT_2 = [vArrayT_2 magnitude(vT_2)]; % Target velocity 
        stageArrayT_2 = [stageArrayT_2 stageT_2];% Target stage 
        massArrayT_2 = [massArrayT_2 MT_2];      % Target mass 
        mnvrArrayT_2 = [mnvrArrayT_2 mnvrT_2];   % Target maneuver 
        %Missile 
        posArrayM_2 = [posArrayM_2 posM_2];      % Missile position 
        hArrayM_2 = [hArrayM_2 hM_2];            % Missile height 
        groundTrackArrayM_2 =... 
            [groundTrackArrayM_2 groundTrackM_2];% Missile ground track 
        distArrayM_2 = [distArrayM_2 distM_2];   % Missile downrange 
        vArrayM_2 = [vArrayM_2 magnitude(vM_2)]; % Missile velocity 
        stageArrayM_2 = [stageArrayM_2 stageM_2];% Missile stage 
        massArrayM_2 = [massArrayM_2 MM_2];      % Missile Mass 
        comLatAccArrayM_2 =... 
            [comLatAccArrayM_2 comLatAccM_2];    % Commanded lat. acc. 
        achLatAccArrayM_2 =... 
            [achLatAccArrayM_2 achLatAccM_2];    % Achieved lat. acc. 
        latDivArrayM_2 = [latDivArrayM_2 latDivM_2];% Lateral divert 
        %Decoy 
        posArrayD_2 = [posArrayD_2 posD_2];      % Decoy position 
        hArrayD_2 = [hArrayD_2 hD_2];            % Decoy height 
        groundTrackArrayD_2 =... 
            [groundTrackArrayD_2 groundTrackD_2];% Decoy ground track 
        distArrayD_2 = [distArrayD_2 distD_2];   % Decoy downrange 
        vArrayD_2 = [vArrayD_2 magnitude(vD_2)]; % Decoy velocity 
        %Target-Decoy 
        distTDArray_2 = [distTDArray_2 distTD_2];% Target-Decoy distance 
        %Missile-Target 
        distArrayMT_2 = [distArrayMT_2 distMT_2];% Missile-target distance 
        VcArrayMT_2 = [VcArrayMT_2 VcMT_2];      % Closing velocity 
    end 
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%% Measurement and Fusion 
    if ~initializing(1) 
        targets = [targets, xT_1]; 
        decoys = [decoys, xD1]; 
    end 
    if ~initializing(2) 
        targets = [targets, xT_2]; 
        decoys = [decoys, xD2]; 
    end 
  
    % Only take measurement if any track initialized 
    if ~initializing(1) || ~initializing(2) 
        %RF sensor look angle and distance to target and sensed position 
        % calculation 
        [measurements1, covariance1] = Scope(isDecoys, isReduced,... 
            isJamming, targets, decoys, posRF1); 
        [measurements2, covariance2] = Scope(isDecoys, isReduced,... 
            isJamming, targets, decoys, posRF2); 
        [measurements3, covariance3] = Scope(isDecoys, isReduced,... 
            isJamming, targets, decoys, posRF3); 
        targets = [];                      % Empty it again for next step 
        decoys = [];                       % Empty it for the next step 
    end 
    %% Prepare data for the fusion box 
    if ~initializing(1) 
        Fs = [Fs, F1]; 
    end 
    if ~initializing(2) 
        Fs = [Fs, F2]; 
    end 
    % Only take measurement if any track initialized 
    if ~initializing(1) || ~initializing(2) 
        measurements = [measurements1; 
                        measurements2; 
                        measurements3];     % Create the measurements stack 
        covariances = [covariance1; 
                       covariance2; 
                       covariance3];        % Covariance stack 
        % Correlate, Associate, Filter and Fuse the measurements 
        [states, Ps] = Mash(isJamming, states, Ps, Fs,... 
                            measurements, covariances); 
        Fs = [];                          % Set empty so that load new ones 
    end     
     
%% Interceptor #1 Motion 
    if (t(1) >= lTimeM_1) && ((hT_1 >= SMALL) ||... 
       (hM_1 >= SMALL)) &&  (VcMT_1 >= 0)%When Missile #1 Launched 
        if launch_flag(1) 
            % Indicate Interceptor Launched 
            disp('Interception #1'); 
            disp('First Interceptor launched!'); 
            disp(' ') 
            launch_flag(1) = 0;                                    
        end 
  
        %Handle Target Stage Change Computations 
        if t(1) >= (stageChangeTimeM_1 + lTimeM_1) 
            % Display Data on stage change 
            disp(['Interceptor #1 Stage-' num2str(stageM_1)... 
                  ' Burnout: Speed = ' num2str(magnitude(vM_1)/1000)... 
                  ' km/s, Altitude= '  num2str(hM_1 / 1000) ' km.']);              
            disp(['Target #1 and Interceptor #1  distance= ',... 
                                       num2str(distMT_1/1000), ' km.']); 
            disp(' '); 
            stageM_1 = stageM_1 + 1;                   % Increase Stage 
            if stageM_1 >= size(dataMatrixM_1,2)       % If No Next Stage 
                stageChangeTimeM_1 = BIG;               
            else 
                stageChangeTimeM_1 = ... 
                    dataMatrixM_1(7, stageM_1 + 1);    % Set Next  
            end 
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        end 
  
        % Launch Kill vehicle 
        if (distMT_1 <= timeStepSwitch)  && (kill_launch(1)) 
            stageM_1 = size(dataMatrixM_1, 2);  % This the final stage 
            dt(1) = nearTimeStep; 
            disp(' ') 
            % Display Data on stage change 
            disp(['KILL VEHICLE IS LAUNCHED FOR INTERCEPTION #1 TIME ',... 
                                          num2str(t(1)), ' seconds']); 
            disp(['Kill Vehicle #1 Stage-' num2str(stageM_1)... 
                  ' Burnout: Speed = ' num2str(magnitude(vM_1)/1000)... 
                  ' km/s, Altitude= '  num2str(hM_1 / 1000) ' km.']);                
            disp(['Target and Kill Vehicle Distance = ',... 
                                       num2str(distMT_1/1000), ' km.']); 
            disp(' '); 
            stageChangeTimeM_1 = BIG;        % never change the stage again 
            dMdtM_1 = 5;                     % JUST FOR GUIDANCE 
            txDelay(1) = 0; % Using onboard sensor  no transfer delay  
            maxG(1) = 15;   % The kill vehicle more capable to maneuver 
            navCoefM(1) = 5;% The kill vehicle more capable to maneuver 
            kill_launch(1) = 0;              % Never enter here again 
            updateTime(1) = nearTimeStep*1;  % Sensor Update Interval (s) 
            SSM1  = SSMnear;                 % Switch the Near time step 
            timeFlags  = [t; 
                          dt; 
                          txFlag; 
                          txCounter; 
                          txDelay];          % Update time flag info 
        end 
        % Move the Interceptor 
          [xM_1, dataMatrixM_1, posM_1, vM_1, unitvM_1, gM_1, aM_1,... 
              hM_1, MM_1, distM_1, groundTrackM_1, oldGroundTrackM_1] =... 
         moveInterceptor(dt(1), xM_1, dataMatrixM_1, stageM_1,... 
                         GFM_1, oldGroundTrackM_1, distM_1); 
    end %(t >= lTimeM_1) & (hM_1 >= SMALL) (When Missile Launched) 
    % Exploit proportional Guidance 
    if ~initializing(1) 
        sensedPosT_1 = Hp*states(:,1);         % First in the stack 
        if ~(kill_launch(1)) 
            % The onboard sensors are more sensitive that the max tolerable std 
            % dev is 0.5 m which can be neglected here. so the sensed position 
            % will be target position if the kill vehicle launched 
            %               sensedPosT_1 = posT_1 ; 
            sensedPosT_1 = posT_1 + randn(3,1)*0.5; 
        end 
        % Calculate the Guidance force to maneuver interceptor. 
        [distMT_1, VcMTTrue_1, oldDistMTTrue_1, VcMT_1, oldDistMT_1,... 
            oldLOSMT_1, mnvrT_1, nlM_1, GFM_1, magGFM_1, magncM_1, ... 
               comLatAccM_1, achLatAccM_1, latDivM_1] =... 
        guidance(1, posT_1, posM_1, sensedPosT_1, vT_1, VcMT_1, ... 
                lTimeM_1, oldDistMTTrue_1, oldDistMT_1, oldLOSMT_1,aT_1,... 
                 gT_1, nlM_1, gM_1, MM_1, unitvM_1, latDivM_1, magncM_1); 
    end 
  
%% Interceptor #2 motion 
    if (t(2) >= lTimeM_2) && ((hT_2 >= SMALL) ||... 
       (hM_2 >= SMALL)) &&  (VcMT_2 >= 0)  %When Missile #2 Launched 
        if launch_flag(2)  
            % Indicate Interceptor Launched 
            disp('Interception #2'); 
            disp('Second Interception launched!'); 
            disp(' ') 
            launch_flag(2) = 0;                                    
        end 
  
        %Handle Target Stage Change Computations 
        if t(2) >= (stageChangeTimeM_2 + lTimeM_2) 
            % Display Data on stage change 
            disp(['Interceptor #2 Stage-' num2str(stageM_2)... 
                  ' Burnout: Speed = ' num2str(magnitude(vM_2)/1000)... 
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                  ' km/s, Altitude= '  num2str(hM_2 / 1000) ' km.']);  
            disp(['Target #2 and Interceptor #2 distance = '... 
                                       num2str(distMT_2/1000), ' km.']); 
            disp(' '); 
            stageM_2 = stageM_2 + 1;                   % Increase Stage 
            if stageM_2 >= size(dataMatrixM_2,2)       % If No Next Stage 
                stageChangeTimeM_2 = BIG;               
            else 
                stageChangeTimeM_2 = ... 
                    dataMatrixM_2(7, stageM_2 + 1);   
            end 
        end 
  
        % Launch Kill vehicle 
        if (distMT_2 <= timeStepSwitch) && (kill_launch(2)) 
            stageM_2 = size(dataMatrixM_2, 2);  % This the final stage 
            dt(2) = nearTimeStep; 
            disp(' ') 
            % Display Data on stage change 
            disp(['KILL VEHICLE IS LAUNCHED FOR INTERCEPTION #2 TIME ',... 
                                   num2str(t(2)), ' seconds']); 
            disp(['Kill Vehicle #2 Stage-' num2str(stageM_2)... 
                  ' Burnout: Speed = ' num2str(magnitude(vM_2)/1000)... 
                  ' km/s, Altitude= '  num2str(hM_2 / 1000) ' km.']); 
            disp(['Target #2 and Kill Vehicle #2 distance = '... 
                                      num2str(distMT_2/1000), ' km.']); 
            disp(' '); 
            stageChangeTimeM_2 = BIG;% never change the stage again  
            dMdtM_2 =  5;            % JUST FOR GUIDANCE 
            txDelay(1) = 0; % Using onboard sensor no transfer delay  
            maxG(2) = 15;            % The kill vehicle more capable to maneuver 
            navCoefM(2) = 5;         % The kill vehicle more capable to maneuver 
            kill_launch(2) = 0;      % Never enter here again 
            updateTime(2) = nearTimeStep*1;% Sensor Update Interval (s) 
            SSM2  = SSMnear;         % Switch Near time step 
            timeFlags  = [t; 
                          dt; 
                          txFlag; 
                          txCounter; 
                          txDelay];   % Update time flag info 
        end 
        % Move the Interceptor 
        [xM_2, dataMatrixM_2, posM_2, vM_2, unitvM_2, gM_2, aM_2, hM_2,... 
            MM_2, distM_2, groundTrackM_2, oldGroundTrackM_2] =... 
         moveInterceptor(dt(2), xM_2, dataMatrixM_2, stageM_2,... 
                         GFM_2, oldGroundTrackM_2, distM_2); 
    end %(When Missile Launched) 
    % Exploit proportional Guidance 
    if ~initializing(2) 
        sensedPosT_2 = Hp*states(:,2);         % First in the stack 
        if ~(kill_launch(2)) 
            % The onboard sensors are more sensitive that the max tolerable std 
            % dev is 0.5 m which can be neglected here. so the sensed position 
            % will be target position if the kill vehicle launched 
            %               sensedPosT_2 = posT_2; 
            sensedPosT_2 = posT_2 + randn(3,1)*0.5; 
        end 
        % Calculate the Guidance force to maneuver interceptor. 
        [distMT_2, VcMTTrue_2, oldDistMTTrue_2, VcMT_2, oldDistMT_2,... 
            oldLOSMT_2, mnvrT_2, nlM_2, GFM_2, magGFM_2, magncM_2,... 
                comLatAccM_2, achLatAccM_2, latDivM_2] =... 
        guidance(2, posT_2, posM_2, sensedPosT_2, vT_2, VcMT_2,... 
               lTimeM_2, oldDistMTTrue_2, oldDistMT_2, oldLOSMT_2, aT_2,...  
               gT_2, nlM_2, gM_2, MM_2, unitvM_2, latDivM_2, magncM_2); 
    end 
%% Increase the time 
    t = timeFlags(1,:);                       % Take the times to increase 
    t = t + timeFlags(2,:);                   % Increase Time 
    timeFlags(1,:) = t;                       % Set the time Flags 
    txCounter = timeFlags(4,:);               % Take the Counter to increase 
    txCounter = txCounter + timeFlags(2,:);   % Increase Counter 
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    timeFlags(4,:) = txCounter;               % Set the time Flag 
    if t >= 3600                              % Exit After 1 Hour Anyway 
        break; 
    end 
end % (Main loop) 
  
%% Erase Data After Miss 
passIndex_1 = find(distArrayMT_1 == min(distArrayMT_1))-1; 
%Target 
tArray_1 = tArray_1(:, 1:passIndex_1); 
posArrayT_1 = posArrayT_1(:, 1:passIndex_1); 
sensedPosArrayT_1 = sensedPosArrayT_1(:, 1:passIndex_1); 
trackingError_1 = trackingError_1(:,1:passIndex_1); 
hArrayT_1 = hArrayT_1(:, 1:passIndex_1); 
groundTrackArrayT_1 = groundTrackArrayT_1(:, 1:passIndex_1); 
distArrayT_1 = distArrayT_1(:, 1:passIndex_1); 
vArrayT_1 = vArrayT_1(:, 1:passIndex_1); 
stageArrayT_1 = stageArrayT_1(:, 1:passIndex_1); 
massArrayT_1 = massArrayT_1(:, 1:passIndex_1); 
mnvrArrayT_1 = mnvrArrayT_1(:, 1:passIndex_1); 
%Missile 
posArrayM_1 = posArrayM_1(:, 1:passIndex_1); 
hArrayM_1 = hArrayM_1(:, 1:passIndex_1); 
groundTrackArrayM_1 = groundTrackArrayM_1(:, 1:passIndex_1); 
distArrayM_1 = distArrayM_1(:, 1:passIndex_1); 
vArrayM_1 = vArrayM_1(:, 1:passIndex_1); 
stageArrayM_1 = stageArrayM_1(:, 1:passIndex_1); 
massArrayM_1 = massArrayM_1(:, 1:passIndex_1); 
comLatAccArrayM_1 = comLatAccArrayM_1(:, 1:passIndex_1); 
achLatAccArrayM_1 = achLatAccArrayM_1(:, 1:passIndex_1); 
latDivArrayM_1 = latDivArrayM_1(:, 1:passIndex_1); 
%Decoy 
posArrayD_1 = posArrayD_1(:, 1:passIndex_1); 
hArrayD_1 = hArrayD_1(:, 1:passIndex_1); 
groundTrackArrayD_1 = groundTrackArrayD_1(:, 1:passIndex_1); 
distArrayD_1 = distArrayD_1(:, 1:passIndex_1); 
vArrayD_1 = vArrayD_1(:, 1:passIndex_1); 
%Target-Decoy 
distTDArray_1 = distTDArray_1(:, 1:passIndex_1); 
%Missile-Target 
distArrayMT_1 = distArrayMT_1(:, 1:passIndex_1); 
VcArrayMT_1 = VcArrayMT_1(:, 1:passIndex_1); 
%-------------------------------------------------------------------------- 
  
%Erase Data After Miss 
passIndex_2 = find(distArrayMT_2 == min(distArrayMT_2))-1; 
%Target 
tArray_2 = tArray_2(:, 1:passIndex_2); 
posArrayT_2 = posArrayT_2(:, 1:passIndex_2); 
sensedPosArrayT_2 = sensedPosArrayT_2(:, 1:passIndex_2); 
trackingError_2 = trackingError_2(:,1:passIndex_2); 
hArrayT_2 = hArrayT_2(:, 1:passIndex_2); 
groundTrackArrayT_2 = groundTrackArrayT_2(:, 1:passIndex_2); 
distArrayT_2 = distArrayT_2(:, 1:passIndex_2); 
vArrayT_2 = vArrayT_2(:, 1:passIndex_2); 
stageArrayT_2 = stageArrayT_2(:, 1:passIndex_2); 
massArrayT_2 = massArrayT_2(:, 1:passIndex_2); 
mnvrArrayT_2 = mnvrArrayT_2(:, 1:passIndex_2); 
%Missile 
posArrayM_2 = posArrayM_2(:, 1:passIndex_2); 
hArrayM_2 = hArrayM_2(:, 1:passIndex_2); 
groundTrackArrayM_2 = groundTrackArrayM_2(:, 1:passIndex_2); 
distArrayM_2 = distArrayM_2(:, 1:passIndex_2); 
vArrayM_2 = vArrayM_2(:, 1:passIndex_2); 
stageArrayM_2 = stageArrayM_2(:, 1:passIndex_2); 
massArrayM_2 = massArrayM_2(:, 1:passIndex_2); 
comLatAccArrayM_2 = comLatAccArrayM_2(:, 1:passIndex_2); 
achLatAccArrayM_2 = achLatAccArrayM_2(:, 1:passIndex_2); 
latDivArrayM_2 = latDivArrayM_2(:, 1:passIndex_2); 
%Decoy 
posArrayD_2 = posArrayD_2(:, 1:passIndex_2); 



135 
 

 

hArrayD_2 = hArrayD_2(:, 1:passIndex_2); 
groundTrackArrayD_2 = groundTrackArrayD_2(:, 1:passIndex_2); 
distArrayD_2 = distArrayD_2(:, 1:passIndex_2); 
vArrayD_2 = vArrayD_2(:, 1:passIndex_2); 
%Target-Decoy 
distTDArray_2 = distTDArray_2(:, 1:passIndex_2); 
%Missile-Target 
distArrayMT_2 = distArrayMT_2(:, 1:passIndex_2); 
VcArrayMT_2 = VcArrayMT_2(:, 1:passIndex_2); 
% ------------------------------------------------------------------------- 
  
%% Plot What you have 
%Define Earth 
[xE, yE, zE] = sphere(36);                  % Generate Unit Sphere 
xE = xE .* Re;                              % Expand X-axis 
yE = yE .* Re;                              % Expand Y-axis 
zE = zE .* Re;                              % Expand Z-axis 
  
%Visualize Earth & The Coordinate Frame 
figure; 
axis equal; 
axis([-7e6 7e6 -7e6 7e6 -7e6 7e6]);        % Set Axes 
view(280,30);                              % Set Suitable View 
grid on; 
hold on; 
surf(xE, yE, zE);                          % Plot Earth 
  
%3D Target Trajectory and Ground Track 
title('Trajectories & Ground tracks') 
xlabel('x(m)'); 
ylabel('y(m)'); 
zlabel('z(m)'); 
  
% Plot Target Trajectory 
plot3(posArrayT_1(1,:), posArrayT_1(2,:), posArrayT_1(3,:), 'y-'); 
  
%Plot Target_2 Trajectory 
plot3(posArrayT_2(1,:), posArrayT_2(2,:), posArrayT_2(3,:), 'y-'); 
  
% Plot Missile Trajectory 
plot3(posArrayM_1(1,:), posArrayM_1(2,:), posArrayM_1(3,:), 'b--'); 
  
% Plot Missile Trajectory 
plot3(posArrayM_2(1,:), posArrayM_2(2,:), posArrayM_2(3,:), 'b--'); 
  
% Plot Decoy Trajectory 
plot3(posArrayD_1(1,:), posArrayD_1(2,:), posArrayD_1(3,:), 'g-.'); 
  
% Plot Decoy Trajectory 
plot3(posArrayD_2(1,:), posArrayD_2(2,:), posArrayD_2(3,:), 'g-.'); 
  
% Plot Target Ground track 
plot3(groundTrackArrayT_1(1,:), groundTrackArrayT_1(2,:),... 
      groundTrackArrayT_1(3,:), 'k:'); 
  
% Plot Target Ground track 
plot3(groundTrackArrayT_2(1,:), groundTrackArrayT_2(2,:),... 
      groundTrackArrayT_2(3,:), 'k:'); 
  
% Plot Missile Ground track 
plot3(groundTrackArrayM_1(1,:), groundTrackArrayM_1(2,:),... 
      groundTrackArrayM_1(3,:), 'k:'); 
  
% Plot Missile Ground track 
plot3(groundTrackArrayM_2(1,:), groundTrackArrayM_2(2,:),... 
      groundTrackArrayM_2(3,:), 'k:'); 
  
% Plot Decoy Ground track 
plot3(groundTrackArrayD_1(1,:), groundTrackArrayD_1(2,:),... 
      groundTrackArrayD_1(3,:), 'k:'); 
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% Plot Decoy Ground track 
plot3(groundTrackArrayD_2(1,:), groundTrackArrayD_2(2,:),... 
      groundTrackArrayD_2(3,:), 'k:'); 
  
plot3(pos0T_1(1), pos0T_1(2), pos0T_1(3), 'bo') 
plot3(pos0M_1(1), pos0M_1(2), pos0M_1(3), 'go') 
plot3(pos0T_2(1), pos0T_2(2), pos0T_2(3), 'bo') 
plot3(pos0M_2(1), pos0M_2(2), pos0M_2(3), 'go') 
plot3(posRF1(1), posRF1(2), posRF1(3), 'co'); 
plot3(posRF2(1), posRF2(2), posRF2(3), 'mo'); 
plot3(posRF3(1), posRF3(2), posRF3(3), 'yo'); 
  
% Plot Distance vs. Height 
figure; 
hold on; 
plot((distArrayT_1 ./ 1000), (hArrayT_1 ./ 1000),'r-'); 
plot((distArrayM_1 ./ 1000), (hArrayM_1 ./ 1000),'b--'); 
plot((distArrayD_1 ./ 1000), (hArrayD_1 ./ 1000),'g-.'); 
title('Ground Distance vs. Height for Interception #1'); 
xlabel('Ground Distance (km)'); 
ylabel('Height (km)'); 
legend('Target #1','Interceptor #1', 'Decoy #1', 0); 
  
% Plot Distance vs. Height 
figure; 
hold on; 
plot((distArrayT_2 ./ 1000), (hArrayT_2 ./ 1000),'r-'); 
plot((distArrayM_2 ./ 1000), (hArrayM_2 ./ 1000),'b--'); 
plot((distArrayD_2 ./ 1000), (hArrayD_2 ./ 1000),'g-.'); 
title('Ground Distance vs. Height for Interception #2'); 
xlabel('Ground Distance (km)'); 
ylabel('Height (km)'); 
legend('Target #2','Interceptor #2', 'Decoy #2', 0); 
  
% Plot Time vs. Height 
figure 
hold on; 
plot((tArray_1 ./ 60), (hArrayT_1 ./ 1000),'r-'); 
plot((tArray_1 ./ 60), (hArrayM_1 ./ 1000),'b--'); 
plot((tArray_1 ./ 60), (hArrayD_1 ./ 1000),'g-.'); 
title('Time vs. Height for Interception #1'); 
xlabel('Flight Time (min)'); 
ylabel('Height (km)'); 
legend('Target #1','Interceptor #1', 'Decoy #1', 0); 
  
% Plot Time versus Height 
figure 
hold on; 
plot((tArray_2 ./ 60), (hArrayT_2 ./ 1000),'r-'); 
plot((tArray_2 ./ 60), (hArrayM_2 ./ 1000),'b--'); 
plot((tArray_2 ./ 60), (hArrayD_2 ./ 1000),'g-.'); 
title('Time vs. Height for interception #2'); 
xlabel('Flight Time (min)'); 
ylabel('Height (km)'); 
legend('Target #2','Interceptor #2', 'Decoy #2', 0); 
  
% Plot Speed vs. Time 
figure; 
hold on; 
plot((tArray_1 ./ 60), (vArrayT_1 ./ 1000),'r-'); 
plot((tArray_1 ./ 60), (vArrayM_1 ./ 1000),'b--'); 
plot((tArray_1 ./ 60), (vArrayD_1 ./ 1000),'g-.'); 
title('Velocity vs. Flight Time for interception #1'); 
xlabel('Flight Time (min)'); 
ylabel('Velocity (km/s)'); 
legend('Target #1','Interceptor #1','Decoy #1', 0); 
  
% Plot Speed vs. Time 
figure; 
hold on; 
plot((tArray_2 ./ 60), (vArrayT_2 ./ 1000),'r-'); 
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plot((tArray_2 ./ 60), (vArrayM_2 ./ 1000),'b--'); 
plot((tArray_2 ./ 60), (vArrayD_2 ./ 1000),'g-.'); 
title('Velocity vs. Flight Time for interception #2'); 
xlabel('Flight Time (min)'); 
ylabel('Velocity (km/s)'); 
legend('Target #2','Interceptor #2','Decoy #2', 0); 
  
% Plot Stage vs. Time 
figure; 
hold on; 
plot((tArray_1 ./ 60), stageArrayT_1,'r'); 
plot((tArray_1 ./ 60), stageArrayM_1,'b'); 
title('Stage vs. Flight Time for Interception #1'); 
xlabel('Flight Time (min)'); 
ylabel('Stage'); 
legend('Target #1','Interceptor #1', 0); 
  
% Plot Stage vs. Time 
figure; 
hold on; 
plot((tArray_2 ./ 60), stageArrayT_2,'r'); 
plot((tArray_2 ./ 60), stageArrayM_2,'b'); 
title('Stage vs. Flight Time for interception #2'); 
xlabel('Flight Time (min)'); 
ylabel('Stage'); 
legend('Target #2','Interceptor #2', 0); 
  
% Plot Total Mass vs. Time 
figure; 
hold on; 
plot((tArray_1 ./ 60), massArrayT_1 ./ 1000,'r'); 
plot((tArray_1 ./ 60), massArrayM_1 ./ 1000,'b'); 
title('Total Mass vs. Flight Time for Interception #1'); 
xlabel('Flight Time (min)'); 
ylabel('Mass (Tons)'); 
legend('Target #1','Interceptor #1', 0); 
  
% Plot Total Mass vs. Time 
figure; 
hold on; 
plot((tArray_2 ./ 60), massArrayT_2 ./ 1000,'r'); 
plot((tArray_2 ./ 60), massArrayM_2 ./ 1000,'b'); 
title('Total Mass vs. Flight Time for interception #2'); 
xlabel('Flight Time (min)'); 
ylabel('Mass (Tons)'); 
legend('Target #2','Interceptor #2', 0); 
  
% Plot Missile-Target Distance 
figure; 
plot((tArray_1 ./ 60), distArrayMT_1 ./ 1000,'b'); 
title('Missile-Target Distance for Interception #1'); 
xlabel('Time (min)'); 
ylabel('Distance (km)'); 
  
% Plot Missile-Target Distance 
figure; 
plot((tArray_2 ./ 60), distArrayMT_2 ./ 1000,'b'); 
title('Missile-Target Distance for Interception #2'); 
xlabel('Time (min)'); 
ylabel('Distance (km)'); 
  
% Plot Missile-Target Closing Velocity 
figure; 
plot((tArray_1 ./ 60), VcArrayMT_1 ./ 1000,'b'); 
axis([0 3 0 14]); 
title('Missile-Target Closing Velocity for Interception #1'); 
xlabel('Time (min)'); 
ylabel('Vc (km/s)'); 
  
% Plot Missile-Target Closing Velocity 
figure; 
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plot((tArray_2 ./ 60), VcArrayMT_2 ./ 1000,'b'); 
axis([0 3  0 14]); 
title('Missile-Target Closing Velocity for interception #2'); 
xlabel('Time (min)'); 
ylabel('Vc (km/s)'); 
  
%Plot Missile Lateral Acceleration 
figure; 
hold on 
plot((tArray_1 ./ 60), comLatAccArrayM_1 ,'b'); 
plot((tArray_1 ./ 60), achLatAccArrayM_1 ,'r'); 
title('Missile Lateral Acceleration for Interception #1'); 
xlabel('Time (min)'); 
ylabel('Lateral Acceleration (g)'); 
axis([0 3 0 15]); 
legend('Commanded', 'Achieved', 0); 
  
% Plot Missile Lateral Acceleration 
figure; 
hold on 
plot((tArray_2 ./ 60), comLatAccArrayM_2 ,'b'); 
plot((tArray_2 ./ 60), achLatAccArrayM_2 ,'r'); 
title('Missile Lateral Acceleration for Interception #2'); 
xlabel('Time (min)'); 
ylabel('Lateral Acceleration (g)'); 
axis([0 3 0 15]); 
legend('Commanded', 'Achieved', 0); 
  
% Plot Missile Lateral Divert 
figure; 
plot((tArray_1 ./ 60), latDivArrayM_1 ,'b'); 
title('Missile Lateral Divert for Interception #1'); 
xlabel('Time (min)'); 
ylabel('Lateral Divert (m/s)'); 
  
% Plot Missile Lateral Divert 
figure; 
plot((tArray_2 ./ 60), latDivArrayM_2 ,'b'); 
title('Missile Lateral Divert for Interception #1'); 
xlabel('Time (min)'); 
ylabel('Lateral Divert for interception 2 (m/s)'); 
  
% Plot Target Maneuver 
figure; 
plot((tArray_1 ./ 60), mnvrArrayT_1 ,'b'); 
title('Target #1 Maneuver '); 
xlabel('Time (min)'); 
ylabel('Maneuver (g)'); 
  
% Plot Target Maneuver 
figure; 
plot((tArray_2 ./ 60), mnvrArrayT_2 ,'b'); 
title('Target #2 Maneuver'); 
xlabel('Time (min)'); 
ylabel('Maneuver (g)'); 
  
% Position Error 
figure; 
plot((tArray_1 ./ 60), trackingError_1 ,'b-'); 
title('Position Error for Target #1'); 
xlabel('Time (min)'); 
ylabel('Magnitude of Position Error (m)'); 
axis([0 3 0 max(trackingError_1)]); 
  
%Position Error 
figure; 
plot((tArray_2 ./ 60), trackingError_2 ,'b-'); 
title('Position Error for Target #2'); 
xlabel('Time (min)'); 
ylabel('Magnitude of Position Error (m)'); 
axis([0 3 0 max(trackingError_2)]); 
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% Target-Decoy Distance 
figure; 
plot((tArray_1 ./ 60), (distTDArray_1./1000) ,'b-'); 
title('Target #1-Decoy #1 Separation'); 
xlabel('Time (min)'); 
ylabel('Target-Decoy Distance (km)'); 
  
% Target-Decoy Distance 
figure; 
plot((tArray_2 ./ 60), (distTDArray_2./1000) ,'b-'); 
title('Target #2-Decoy #2 Separation'); 
xlabel('Time (min)'); 
ylabel('Target-Decoy Distance (km)'); 
  
%Display Final Intercept Data 
disp('INTERCEPTION #1'); 
disp (['Target Range =' num2str(distT_1 / 1000) ' km.']) 
disp (['Missile Range =' num2str(distM_1 / 1000) ' km.']) 
disp (' ' ); 
disp (['Intercept Time =' num2str(max(tArray_1)/60) ' minutes.']) 
disp (['Miss Distance =' num2str(min(distArrayMT_1)) ' m.']) 
disp (['Lateral Divert =' num2str(max(latDivArrayM_1)) ' m/s.']) 
disp (' '); 
  
%Display Final Intercept Data 
disp('INTERCEPTION 2'); 
disp (['Target_2 Range =' num2str(distT_2 / 1000) ' km.']) 
disp (['Missile_2 Range =' num2str(distM_2 / 1000) ' km.']) 
disp (' ' ); 
disp (['Intercept Time_2 =' num2str((max(tArray_2)-lTimeT_2)/60) ' minutes.']) 
disp (['Miss Distance =' num2str(min(distArrayMT_2)) ' m.']) 
disp (['Lateral Divert =' num2str(max(latDivArrayM_2)) ' m/s.']) 
disp (' '); 
disp ('Simulation Finished.'); 
toc;                    % Calculate Run time 
 

B. GEO2CART ( ) 
function r = geo2cart(strLatitude, strLongitude, R) 
% GEO2CART      This will map the geographic coordinate system to Cartesian 
%       coordinate sysytem. 
%       This convert the geographical coordinate to the Cartesian 
%       coordinate given that the position on the earth defined as 
%       longitude an the latitude and earth is the sphere with radius R. 
%        
%       Examples of recognized formats are 
%       123°30'00”S, 123-30-00S, 123d30m00sS and 1233000S. 
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
lat = deg2rad(npi2pi(str2angle(strLatitude))); 
lon = deg2rad(npi2pi(str2angle(strLongitude))); 
theta = pi/2-lat; 
phi = lon; 
x = R * sin(theta) * cos(phi); 
y = R * sin(theta) * sin(phi); 
z = R * cos(theta); 
r = [x;y;z]; 
 

C. TOP2CART ( ) 
function y = top2cart(az, el, strLat, strLon) 
  
% TOP2CART  This find the initial velocity unit vector in 
%      Cartesian coordinate system of the ballistic missile 
%      given that the geographic position and the azimuth and 
%      elevation angle of the launch. 
% 
%       Examples of recognized formats are 
%       123°30'00”S, 123-30-00S, 123d30m00sS and 1233000S. 
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% 
%      This will return the velocity unit vector in the form 
%      of Vu = [Vx;Vy;Vz] 
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
lat = deg2rad(npi2pi(str2angle(strLat))); 
lon = deg2rad(npi2pi(str2angle(strLon))); 
  
%Local transformation (R is assumed to be unity) 
HA = sin(el); 
EA = cos(el)*cos(az); 
NA = cos(el)*sin(az); 
  
%Global transformation 
T = [-sin(lat)*cos(lon) -sin(lon) cos(lat)*cos(lon) 
     -sin(lat)*sin(lon) cos(lon)  cos(lat)*sin(lon) 
     cos(lat)          0         sin(lat)]; %Rotation Vector 
  
y = T * [EA;NA;HA]; 
 

D. REFORMDATAMATRIX ( ) 
function y = reformDataMatrix(dataMatrix) 
% REFORMDATAMATRIX    This add three new Rows and convert the pound weight 
% to the Kg to the missile data matrix 
% 
%   reformDataMatrix(dataMatrix) is add dM/dt and canister Weight rows and 
%   total weight to the data matrix. Before adding value it convert first 
%   two row to Kg 
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
  
numStage = size(dataMatrix, 2);   %Number of Stages  
mcf = 0.4535924;    %Mass Conversion Factor (lb --> kg) 
%Masses lb --> kg 
for r = 1:2 
    for c = 1:numStage 
        dataMatrix(r, c) = dataMatrix(r, c) * mcf; 
    end 
end 
  
% Add dM/dt and Canister Weight Rows to Data Matrix 
intermVar1 = [];        % Define an intermediate variable 
intermVar2 = [];        % Define an intermediate variable 
for i = 1:numStage      % Loop for the number of stages 
    intermVar1 = [intermVar1 (dataMatrix(2,i) /... 
                  dataMatrix(4,i))];    % Generate dM/dt row 
    intermVar2 = [intermVar2 (dataMatrix(1,i) -... 
                  dataMatrix(2,i))];    % Generate canister weight row 
end 
dataMatrix = [dataMatrix; intermVar1; intermVar2];    % Reform Matrix 
  
%Add Ignition Time Row to Data Matrix 
intermVar1 = cumsum(dataMatrix(4,:));                  % Sum burn times 
intermVar1 = [0 intermVar1(1:(size(intermVar1,2)-1))]; % Ignition time row 
% Generate initial total mass 
m1 = sum(dataMatrix(1,:));                      % Stage #1 Total weight 
m2 = sum(dataMatrix(1,2:4));                    % Stage #2 Total weight 
m3 = sum(dataMatrix(1,3:4));                    % Stage #3 Total weight 
m4 = dataMatrix(1,4);                           % Stage #4 Total weight 
intermVar3 = [m1 m2 m3 m4]; 
  
y = [dataMatrix; intermVar1; [m1 m2 m3 m4]];    % Reform Matrix 
 

E. MAGNITUDE ( ) 
function y = magnitude(x) 
% MAGNITUDE     This finds out the magnitude of the any Cartesian 
%   coordinate vector which is extended to point (x,y,z) from origin 
%   y = sqrt(x(1)^2 + x(2)^2 + x(3)^2...+ x(n)^2); 
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% 
%   This return the found magnitude 
  
%    Copyright (c) 2004-2005 by Kursad YILDIZ 
  
y = sqrt(x'*x); 
 

F. MOVEICBM ( ) 
function [F, state, altitude, Weight, pos, V, a, g, trc, old_trc, dist, dataMatrix] =... 
            moveICBM(dt, state, dataMatrix, stage, old_trc, dist) 
% MOVEICBM          This function find out the next state of ICBM 
%       given prior state, dt dataMatrix, and its stage. 
% 
% This returns new state column matrix, altitude, weight and the missile 
% and Gravitational Acceleration, distance from the launch site and the 
% ground track of the ICBM 
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
  
Re = 6.37e6;                    % Radius of the Earth (m) 
G = 6.67e-11;                   % Gravitational Constant (m^3/s^2.kg) 
Me = 5.98e24;                   % Earth's Mass (kg) 
Cd = 1.25;                      % missile drag coefficient 
Area = pi* 1.30^2;              % Cross sectional area meter square 
Hp = [1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0];             % The position observation matrix 
Hv = [0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1];             % Velocity observation matrix 
  
dMdt =  dataMatrix(5, stage);   % Fuel burn ratio 
ISP  =  dataMatrix(3, stage);   % Specific Impulse 
M    =  dataMatrix(8, stage);   % Current mass 
pos = Hp*state;                 % Current position 
V = Hv*state;                   % Current velocity 
magX =  magnitude(pos);         % Magnitude of position vector 
magV =  magnitude(V);           % Magnitude of velocity vector 
unitX = unitVector(pos);        % Position Unit vector 
unitV = unitVector(V);          % Velocity Unit vector      
altitudeOLD = magX - Re;        % Current Altitude of the missile (m) 
g = (G * Me) / (magX ^ 2);      % Gravitational Acceleration (g) 
  
% Create the transition Matrix for ICBM 
W = G * Me / magX^3;            % Weight 
Tr = dMdt * ISP * G * Me /... 
     (magX^2 * magV * M);       % Trust 
ro = rho(altitudeOLD);          % Air density 
Dr = ro * G * Me * Cd * Area/... 
          (2 * M * magX^2 );    % Drag 
  
a = (Tr-Dr)*V - pos*W;          % Acceleration 
  
T1 =[0       0           0           1          0           0; 
     0       0           0           0          1           0; 
     0       0           0           0          0           1; 
     -W      0           0           Tr-Dr      0           0; 
     0      -W           0           0          Tr-Dr       0; 
     0       0          -W           0          0           Tr-Dr]; 
F = eye(6) + T1*dt; 
  
% Move the missile to next position 
state = F * state; 
  
altitude = magnitude(Hp*state)-Re; % Altitude of the missile (m) 
Weight = M - dMdt * dt;            % Reduce total weight 
dataMatrix(8, stage) = Weight;     % Store the weight in dataMatrix 
pos = Hp*state;                    % Next Position 
V = Hv*state;                      % Next Velocity 
trc = unitVector(pos) * Re;        % Ground track Vector 
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dist = dist + magnitude(trc - old_trc); % Range from launch site 
old_trc = trc; 
 

G. UNITVECTOR ( ) 
function y = unitVector(R) 
% UNITVECTOR        This find out the unit vector of the Cartesian 
%   coordinate vector R which is extended to point (x,y,z) from origin  
% 
%   Returns the unit vector of the given Vector 
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
if magnitude(R) == 0 
    y = [0;0;0]; 
else 
    y = R / magnitude(R); 
end 
 

H. RHO ( ) 
function y = rho(altitude) 
  
% RHO       This calculate the air density for given altitude. This 
%       use the exponential approximation for the air density 
%        
%       Altitude, for which we need to find the air density, is in meter.  
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
  
  
ro1 = 0.002378;     % Atmospheric density constant-1  (altitude < 30000 ft) 
ro2 = 0.0034;       % Atmospheric density constant-1  (altitude > 30000 ft) 
Kp1 = 30000;        % Atmospheric Constant-2  (altitude < 30000 ft) 
Kp2 = 22000;        % Atmospheric Constant-2  (altitude > 30000 ft) 
ft2m = 0.3048;      % Conversion coefficient from ft to meter 
den_con = 515.1836; % slug/ft^3  ----> kg/m^3 conversation coefficient 
  
  
if (altitude <= 30000*ft2m) 
    y = den_con * ro1*exp(-altitude/(ft2m*Kp1)); % Air density (kg/m^3) 
else 
    y = den_con * ro2*exp(-altitude/(ft2m*Kp2)); % Air density (kg/m^3) 
end 
 

I. MOVEDECOYS ( ) 
function [state, altitude, pos, V, trc, old_trc, dist, dist2] =... 
          moveDecoys(dt, state, pM, dist, old_trc) 
% MOVEDECOY     This function finds out the next state of Decoy,  
%       given earlier state position and dt time interval. 
% 
% This returns new state column matrix, altitude, position, velocity, ground 
% track, range and missile decoys separation 
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
  
  
Re = 6.37e6;                    % Radius of the Earth (m) 
G = 6.67e-11;                   % Gravitational Constant (m^3/s^2.kg) 
Me = 5.98e24;                   % Earth's Mass (kg) 
Cd = 1.25;                      % Missile drag coefficient 
Area = pi* 0.5^2;               % Decoys cross sectional area meter square 
M = 90;                         % Decoys weight (kg) 
Hp = [1 0 0 0 0 0; 
    0 1 0 0 0 0; 
    0 0 1 0 0 0];               % The position observation matrix 
Hv = [0 0 0 1 0 0; 
    0 0 0 0 1 0; 
    0 0 0 0 0 1];               % velocity observation matrix 
pos = Hp*state;                 % Current position 
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magX = magnitude(pos);          % Magnitude of Position 
  
altitudeOLD = magX - Re;        % Altitude of the missile (m) 
  
% create the transition Matrix for ICBM 
W = G * Me / magX^3;            % Weight 
Tr = 0;       % Trust 
ro = rho(altitudeOLD);          % Air Density 
Dr = ro * G * Me * Cd * Area/... 
    (2 * M * magX^2 );          % Drag 
  
T1 =[0       0           0           1          0           0; 
    0       0           0           0          1           0; 
    0       0           0           0          0           1; 
    -W      0           0           Tr-Dr      0           0; 
    0      -W           0           0          Tr-Dr       0; 
    0       0          -W           0          0           Tr-Dr]; 
T = eye(6) + T1*dt; 
% find the new state-space of the missile 
state = T * state; 
altitude = magnitude(Hp*state)-Re; % Altitude of the missile (m) 
pos = Hp*state; 
V = Hv*state; 
%Integrate decoy downrange 
trc = UnitVector(pos) * Re; 
dist = dist + magnitude(trc - old_trc);    
old_trc = trc; 
% Missile -decoy distance 
dist2 = magnitude(pM - pos); 
 

J. SCOPE ( ) 
function [measurements, covariance] = Scope(isDecoys, isReduced, isJamming, targets, de-
coys, posRF) 
  
% SCOPE    In multi-target multi-sensor environment, this simulates 
%           the radars sensing ability. 
% 
%           A stack of radar measurement and related stack of covariance 
%           matrix, which correspond the clutter, false target and the real 
%           target echoes will be returned.  
% 
%           If the any of the expandable decoys is released then the 
%           measurement stack will include it.  
% 
%           if the reduced RCS is used then the radar error will increase. 
%           Because the value of the RCS do not change significantly and 
%           The simulation has already used the interpolation for the 
%           detailed degrees. This will just use stage one RCS value for 
%           standard deviation. 
% 
%           if the jamming is on then radars returns to angle only 
%           measurement.  
% 
%           isDecoys is the flag array that if the any of the expandable 
%               decoys are released or not. Depending on the number of 
%               targets out there the length of the array will increase. If 
%               any point in the array is different then “zero”, then 
%               related index numbered target release the decoy.  
%           isReduced is the flag that indicates the use of Reduced RCS 
%           isJamming is the flag that indicates the changing angle only 
%               measurement 
%           targets is the stack that contains the current state of the 
%               all targets out in the sky in Cartesian coordinate.            
%           posRF is the  Radar position in Cartesian coordinate 
% 
%           See also sensePositionRF, senposition 
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
global RCS1X RCS1X_R 
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%% Constants 
% This assumes that all the radars use the same parameter. If the radar 
% parameter will be changed construct a “switch” to assign the parameter 
%       = [1          2             3           4        5          6 
%       7    8   9   10        11     12                 13] 
% RdPar = [frequency, 3dB_Bandwith, Peak_Power, Gain,    Pulsewith, 
% Rcvr_Bandwith, PRF, Ni, Fr, lambda,   km,    3dB_band_in_radin, FrBs]; 
RdPar = [10e9 0.5 1000e3 104000 50e-6 20000 150 20 4 0.03 1.7 0.0087266 20]; 
  
SOL = 3e8;          % Speed of light (m/s) 
kT0 = 4e-21;        % Boltzmann Constant x 290K 
RCSD = 10^(5/10);   % Decoy Radar Cross Section (5 dBsm) 
Pm = 0.001;         % Probability of miss while target exist 
  
Hp = [1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0];                         % Position Observation Matrix 
Hv = [0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1];                         % Velocity observation Matrix 
% Create false target/clutter for this radar 
numfalse = 5;                               % The number of false target or 
                                            % clutter created by each radar 
                                            % is assumed to be 10 per scan  
                                            % per validation volume.   
%% Prepare for measurements 
if isReduced 
    RCSindex = RCS1X_R;           % Reduced RCS look-up table 
    snr = 10; 
else 
    RCSindex = RCS1X;             % Normal RCS look-up table 
    snr = 500; 
end 
  
measurements = [];                          % Empty Measurements stack  
covariance = [];                            % Empty covariance stack 
  
for i = 1:size(targets,2)       
%% Make the target measurements 
    pos = Hp*targets(:,i);                  % Related target true Position  
    vel = Hv*targets(:,i);                  % Related target true velocity 
    LOS = pos - posRF;                      % Line of Sight    
    Range = magnitude(LOS);                 % Magnitude of LOS 
    lookAngle = acos(dot(unitVector(LOS),... 
                         unitVector(vel))); % Radar Look Angle (rad) 
  
    %Determine RCS Seen by RF Sensors 
    RCS = RCSindex(round(rad2deg(lookAngle)*10) + 1); 
    RCS = 10 ^ (RCS / 10);                  %Convert RCS values : dBsm > sm 
    SNR = (RdPar(3)* RdPar(4)^2*RdPar(5) *1*RCS*RdPar(10)^2)/... 
        ((4*pi)^3*kT0*RdPar(9)*Range^4);    % Calculate SNR 
    sigmaA = RdPar(12)/(RdPar(11)*... 
        sqrt(2*snr*RdPar(13)));             % Angular Error Std. Dev. (rad)    
    sigmaR = (SOL*RdPar(5)/2)/(RdPar(11)*... 
        sqrt(2*snr*RdPar(13)));             % Range Error Std. Dev. (m)                                
     
    % Convert LOS to the spherical coordinate 
    [tt,pp,rr] = cart2sph(LOS(1),LOS(2),LOS(3));    % Convert to spherical 
    Zs = [rr;tt;pp]; 
    sigma = [sigmaR;sigmaA;sigmaA];                 % STD.DEV vector 
    cov = diag(sigma.^2);                           % Measurement covariance 
    % If the target use barrage jamming then switch angle only 
    if isJamming         
        Zs(1) = 0;                                      % No range information 
    end % end for is jamming for targets 
    Zsm = Zs + randn(size(sigma)).*sigma;               % Add the error 
    [xx,yy,zz] = sph2cart(Zsm(2), Zsm(3), Zsm(1)); 
    Zcm = posRF + [xx;yy;zz];                           % Convert to Cartesian to find 
err 
    err = magnitude(pos - Zcm);                         % Find error in measurement 
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    if rand < Pm 
        Zsm = [0;0;0];                                  % Radar may miss the target 
    end 
    Zsm = [Zsm; posRF];                                 % Add RF position for evaluation 
    measurements = [measurements Zsm];                  % Add to the stack 
    covariance = [covariance cov];                      % Add to the stack 
     
%%  Make the measuremnts for the False targets and clutters     
    co_sigma = (1 + 1*rand(1,numfalse));    % False target can be placed 
                                            % 1*sigma to 1*sigma window 
                                            % from the target. The longer 
                                            % distance is already gated out 
                                            % by assumption                                            
    for k = 1:numfalse 
        sigmaF = sigma*co_sigma(k);         % Sigma for False target 
        Zsm = Zs + randn(size(sigma)).*sigma;% Add the error 
        Zsm = [Zsm; posRF];                 % Add RF position for evaluation 
        measurements = [measurements Zsm];         
        covariance = [covariance cov]; 
    end % end for false target and clutter        
     
%%  Take the measurement for only the decoy which is released     
    if isDecoys(i) 
        posD = Hp*decoys(:,i);              % Current position of decoy 
        LOSD = posD - posRF;                % Line of Sight 
        SNR = (RdPar(3)*RdPar(4)^2*RdPar(5) *1*RCSD*RdPar(10)^2)/... 
            ((4*pi)^3*kT0*RdPar(9)*magnitude(LOSD)^4);      % Calculate SNR 
        sigmaAD = RdPar(12)/(RdPar(11)*... 
            sqrt(2*SNR*RdPar(13)));         % Angular Error Std. Dev. (rad) 
        sigmaRD = (SOL*RdPar(5)/2)/(RdPar(11)*... 
            sqrt(2*SNR*RdPar(13)));         % Range Error Std. Dev. (m) 
        [tt,pp,rr] = cart2sph(LOSD(1),LOSD(2),LOS(3));    % Convert to spherical 
        Zs = [rr;tt;pp]; 
        sigmaD = [sigmaRD;sigmaAD;sigmaAD];            % STD.DEV vector  
        % Convert LOS to the spherical coordinate 
        if isJamming             
            Zs(1) = 0;                                     % No range information 
%             sigmaD(1) = 0;                                 % STD.DEV vector             
        end % end for is jamming 
        Zsm = Zs + randn(size(sigmaD)).*sigmaD;              % Add the error 
        Zsm = [Zsm; posRF];                                 % Add RF position for evalua-
tion 
        measurements = [measurements Zsm];                  % Add to the stack 
        covariance = [covariance cov];                      % Add to the stack 
    end % end for if isDecoys 
%%  
end    % end for outer for loop 
  
%% Use the same column number 
% Be sure all measurement stacks have the same number of columns. There 
% should be 4 more measurements than number of false target/clutter. Two 
% for real targets, two for decoys (Not necessarily but needed to have the 
% same number columns) 
nubcol = size(targets,2)*numfalse + size(targets,2) + size(decoys,2);% Max number of col-
umns 
add = nubcol - size(measurements,2);        % Needed extra columns 
for j = 1:add 
    measurements = [measurements zeros(6,1)];   % Fill with zeros 
    covariance = [covariance zeros(3)];         % Fill with zeros 
end 
 

K. MASH ( ) 
function [states, cov] = Mash(isJamming, PreStates, PreCov, Fs, measurements, covari-
ances) 
  
% MASH In the multi-target multi-sensor environment this simulates the 
%       measurements correlation, association, and Kalman filtering. 
% 
%       The inputs are array of measurements and covariance. This will apply 
%       the ellipsoidal gating to correlate the measurement with the track. If 
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%       the resulting correlation has more than one measurements than 
%       this will apply the probabilistic analyze to associate the track. 
% 
%       The track initiation is done by the help of the IR sensor which is 
%       not simulated in the original simulator. The new track will send to 
%       here by “ad hoc” and test will apply if any measurements correlate 
%       and associate with this new information.  
% 
%       isJamming is the indication of angle only measurement 
%       PreStates is the stack of previous states of the track 
%       PreCov is the array of previous states covariance 
%       Fs is the array of transition matrix 
%       measurements is the array of measurements that comes from the 
%       RF sensors 
%       covariances is the array of the measurement covariance 
% 
%       states is the array of Kalman filtered new states of previously 
%       inilized track 
%       cov is the array of new covariance of previously initialized track 
% 
%       See also fusionBox 
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
warning('off'); 
  
%% Constants 
Hm = [eye(3),zeros(3)];            % Measurement Observation Matrix 
Hrf = [zeros(3), eye(3)];          % RF Position observation Matrix 
Pd = 0.999;                        % Probability of detection 
Pg = 0.9786;                       % Probability of target within correlation window 
m = 5;                             % Expected number of measurement in the gate volume 
M = 3;                             % Measurement dimension 
  
% Gate threshold that the probability of mass Pg in side the gate is 0.9786. 
gama = 9;                           % 4sigma window 
  
dt = 0.05;                              % Fusion box time interval (s) 
q2 = 0.001;                             % Plant Noise Coefficient square = 0.001 
Q = q2 * [dt^3/3   0       0      dt^2/2      0       0; 
          0       dt^3/3  0       0           dt^2/2  0; 
          0       0       dt^3/3  0           0       dt^2/2; 
          dt^2/2  0       0       dt          0       0; 
          0       dt^2/2  0       0           dt      0; 
          0       0       dt^2/2  0           0       dt]; 
       
%% Corralate, Associate, Fuse start-up 
states = [];                    % Empty states vector array 
cov = [];                       % Empty Covariance matrix Array 
ii = 1;                         % Outer for matrix index 
iend = size(PreStates,2);       % number of target 
  
for i = 1:iend 
     
%% PREDICTION Phase For Kalman Filter 
    F = Fs(1:6,ii:ii+5);        % Related Transition 
    x = PreStates(:,i);         % Related state vector 
    P = PreCov(1:6, ii:ii+5);   % Related covariance 
    ii = ii + 6;                % Increase for next step     
    x_k = F*x;                  % Predicted position 
    P_k = F*P*F' + Q;           % Prediction covariance 
     
%% CORRELATION     
    track = [];                 % Empty Track information array for related target 
    trackP = [];                % Empty track covariance array for related target 
    Tr = [];                    % Empty trace of track covariance array 
    kk = 1;                     % Zs  matrix index 
    kkk = 1;                    % Rs matrix index 
    % There is 6 rows, 3 for measurement, 3 for RF position 
    kend = (size(measurements,1)/6);    % Number of radars 
    for k = 1:kend         
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        % Select stack to test 
        Zs = measurements(kk:kk+5, 1:size(measurements,2));   % Related measurements 
        Rs = covariances(kkk:kkk+2, 1:size(covariances,2));   % Related covariance 
        LOS = Hm*x_k - Hrf*Zs(:,1);                           % LOS OF RELATED RF 
         
        [tt,pp,rr] = cart2sph(LOS(1), LOS(2), LOS(3));        % Predicted measurement 
        h = [rr;tt;pp]; 
        % Measurement matrix is the gradient of the measurement function 
        H = Hk(LOS);          
        % Index increasing 
        kk = kk + 6;                % Increase for next step 
        kkk = kkk + 3;              % Increase for next step 
         
        % Find the Measurement Matrix ('h' and 'H')for extended Kalman filter 
        if isJamming 
            h(1) = 0;               % No range observation 
            H(1,1:6) = zeros(1,6); 
        end % End for if isjamming 
         
         % 'R' and 'S' is the same for within radar measurements 
        R = Rs(1:3, 1:3);           % R  measurement covariance 
        S = H*P_k*H' + R;           % Residual covariance 
         
        AsoMat =[];                 % Empty correlated innovation matrix 
        ej = [];                    % Empty probability matrix   
        Darray = [];                % Empty statistical distance array 
        CorrD = [];                 % Correlated statistical distance 
        Corrmu = [];                % Correlated innovation 
        Marray = [];                % Test array 
        nend = size(Zs,2);          % Number of observation to test         
        for n = 1:nend 
            z = Hm*Zs(:,n);         % Measurement to test              
            mu = z - h;             % Residual             
            D = abs(mu'*inv(S)*mu); % Statistical distance             
            Darray = [Darray D]; 
            AsoMat = [AsoMat mu];   % Correlated innovation  
            if D <= gama            % Test against window 
                CorrD = [CorrD D]; 
                Corrmu = [Corrmu mu]; 
            end 
        end % End for measurements loop  
         
        if length(CorrD) > 0 % Use at most 5 data 
            if length(CorrD) > 4 
                Marray = Corrmu(:,1:3); 
                ej = exp(-1/2*CorrD(1:3)); 
            else 
                Marray = Corrmu; 
                ej = exp(-1/2*CorrD); 
            end 
        else 
            for n = 1:4                         % Just pick up m to use 
                [D index] = min(Darray); 
                ej = [ej (exp(-1/2*D))];         % Statistical distance probability 
                Marray = [Marray AsoMat(:,index)];% Store the first min 5 
                Darray(index) = max(Darray);     % Do not choose again 
            end 
        end 
         
%% ASSOCIATION WITH JPDA        
        jend = size(Marray,2);  % Number of correlated measurement     
         
        % Find Combined Residual weighted with own probability  
        c = sum(ej);             % Normalizing Constant 
        b = m*sqrt(2*pi)*(1 - Pd*Pg)/... 
                 (gama*pi*Pd);   % Probability miss coefficient   
        Betanot = b/(b + c);     % Probability that there is no target return in this 
stack 
        Betaj = ej./(b + c);     % Each correlation probability 
        muT = [0;0;0];                 % Combined innovation          
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        for j = 1:jend 
            muT = muT + Betaj(j)* Marray(:,j);   % Combined innovation 
        end          
         
%% CORRECTION Phase for Kalman Filtering 
        % Find the covariance increase coefficient 
        sumP = 0; 
        for j = 1:jend 
            sumP = sumP + (Betaj(j)*Marray(:,j)*(Marray(:,j))' - muT*muT'); 
        end 
        K      = P_k*H'*inv(S);           % Filter gain 
        % Update covariance 
        P_c    = (eye(length(K)) - K*H)*P_k*(eye(length(K)) - K*H)' + K*R*K'; 
        % Incrase in covariance due to use of multiple measurement 
        Phat   = K*sumP*K';                        
        P_post = Betanot*P_k + (1 - Betanot)*P_c + Phat;    % New Covariance 
        xhat   = x_k + K*muT;         
         
%% Store track information 
        track = [track xhat]; 
        trackP = [trackP P_post]; 
        Tr = [Tr abs(trace(P_post))]; 
    end % end for radar loop 
     
%% Fuse the track files 
    c = sum(1./Tr);                    % Normalizing Constant 
    st = 0; 
    pp = 0; 
    qq = 1;                         % Index for choosing covariance 
    qend = size(track,2);           % Number of track file to fuse 
    for q = 1:qend 
        st = st + (1/Tr(q))/c*track(:,q); 
        pp = pp + (1/Tr(q))/c*trackP(1:6,qq:qq+5); 
        qq = qq + 6; 
    end % End for Fusion 
     
%% Store the results for related target 
    states = [states st]; 
    cov = [cov pp];     
end % end for states loop 
 

L. HK ( ) 
function H = Hk(R); 
% HK        This will find the measurement matrix for the extended kalman 
%           filter. For this EKF, non-linearity is for the measurement such 
%           that the sensor observe the [range;azimuth;elevation]; 
% 
%           The measurement function is assumed to be as z = [sqrt(x^2 + 
%           y^2 +z^2); 
%                atan2(y,x); atan2(z,sqrt(x^2 + y^2))] 
% 
%           This will return the measurement matrix 
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
x = R(1); 
y = R(2); 
z = R(3); 
a1 = sqrt(x^2 + y^2 + z^2); 
a2 = sqrt(x^2 + y^2); 
H = [x/a1          y/a1            z/a1     0    0    0; 
    -y/a2^2        x/a2^2          0        0    0    0; 

    -z*x/(a2*a1^2)          -z*y/a2/a1^2               a2/a1^2             0          0          0];  
 

M. MOVEINTERCEPTOR ( ) 
function [state, dataMatrix, pos, V, unitV, g, a, alt, M, dist, grd_trc, grd_trc_old] 
=... 
         moveInterceptor(dt, state, dataMatrix, stage, GF, grd_trc_old, dist) 
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% MOVEINTERCEPTOR move forward the given ICBM INTERCEPTOR for the next step 
% 
%          dt is the time interval of the simulation state is the current 
%          state of the ICBM dataMatrix is the data for the ICBM stage is 
%          the stage number which the ICBM is in GF is the guidance force 
%          that need to turn the ICBM 
% 
%          this returns state is new state vector of the ICBM datamatrix is 
%          new data matrix that the total weight is reduced g is the 
%          gravitational acceleration needed for the guidance alt is the 
%          current altitude of the ICBM  
  
% Copyright (c) 2004-2005 by Kursad YILDIZ 
  
  
Re      = 6.37e6;          % Radius of the Earth (m) 
G       = 6.67e-11;        % Gravitational Constant (m^3/s^2.kg) 
Me      = 5.98e24;         % Earth's Mass (kg) 
Cd      = 1.25;            % missile drag coefficient 
Area    = pi* 1.30^2;      % missile cross sectional area meter square 
Hp = [1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0];        % The position observation matrix 
Hv = [0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1];        % velocity observation matrix 
  
dmdt =  dataMatrix(5, stage);   % Fuel burn ratio 
Isp  =  dataMatrix(3, stage);   % Specific Impulse 
M    =  dataMatrix(8, stage);   % State mass 
if M <= 0       % Do not use fuel that is not in the tank 
    dmdt = 0; 
end 
pos = Hp*state;                 % Current Position 
V = Hv*state;                   % Current Velocity 
magX =  magnitude(pos);         % Magnitude of position vector 
magV =  magnitude(V);           % Magnitude of velocity vector 
% Find altitute 
alt = magX - Re;                % Current altitude 
g = (G * Me) / (magX ^ 2);      % Gravitational Acceleration (g) 
W = G * Me / magX^3;            % Weight 
Tr = dmdt * Isp * G * Me /... 
    (magX^2);                   % Trust 
magGF = magnitude(GF);          % Magnitude of guidance force 
  
% Compensate for Guidance Command 
% If Lateral Acceleration Requirements Exceeds Available Thrust 
if (magGF >= Tr)                 
    magGF = Tr;                 % Apply as Much as Available 
    Tr = 0;                     % Set Thrust to zero 
else % If not, compensate Thrust for the Guidance Force 
    Tr = sqrt(Tr^2 - magGF^2);   
end 
Tr = Tr/(magV * M);             % Magnitude of the applicable Thrust  
ro = rho(alt);                  % Air density 
Dr = ro * G * Me * Cd * Area /... 
    (2 * M * magX^2 );          % Drag 
a = (Tr-Dr)*V -... 
     pos*W;                % Acceleration 
T1 =[0       0           0           1          0           0; 
     0       0           0           0          1           0; 
     0       0           0           0          0           1; 
     -W      0           0           Tr-Dr      0           0; 
     0      -W           0           0          Tr-Dr       0; 
     0       0          -W           0          0           Tr-Dr]; 
T2 = [0;0;0;GF];                % Guidance force in 6 dimension 
F = eye(6) + T1*dt; 
state = F*state + T2*dt/M;      % Next step 
pos = Hp*state;                 % Next Position 
unitX = unitVector(pos);        % Next position Unit Vector 
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V = Hv*state;                   % Next Velocity 
unitV = unitVector(V);          % Next velocity Unit Vector 
M = M - dmdt * dt;              % Reduce total weight  
dataMatrix(8, stage) = M; 
alt = magnitude(pos) - Re;      % New altitude 
%Integrate missile downrange 
grd_trc = unitX * Re;           % Ground track Vector 
currDistM = grd_trc - grd_trc_old; 
dist = dist + magnitude(currDistM); 
grd_trc_old = grd_trc;          % Record previous ground track 
 

N. GUIDANCE ( ) 
function [distMT, VcMTTrue, oldDistTrue, Vc, oldDist, oldLOS, mnvr, Nlm, GFM,... 
          magGFM, magNC1, comLatAccM, achLatAccM, LateralDiv] =... 
            guidance(which, TargetX, MissileX, sensedPos, Velocity, Vc, lounchT,... 
                     oldDistTrue, oldDist, oldLOS, a, gICMB, Nlm, g, Weight, unitV,... 
                     LateralDiv, magNC0) 
  
% GUIDANCE      This will calculate the guidance force and all the other 
%       potable values for the missile interception 
% 
%       which indicates the interception number 
%       TargetX true position of the target 
%       MiiisleX true position of the interceptor 
%       sensedPos is the estimated state of the target 
%       Velocity true velocity of the target 
%       Vc is the prior Closing velocity 
%       LounchT is the launch time of the target 
%       oldDistTrue is the true prior target ---> Interceptor distance 
%       oldDist is the estimated target ---> Interceptor distance 
%       oldLOS is the prior line of sight target--->Interceptor 
%       a is the true acceleration of the target 
%       gICBM is the true gravitational acceleration of the target 
%       Nlm is prior achieved acceleration 
%       g is the gravitational acceleration of the interceptor 
%       Weight is mass of interceptor 
%       UnitV is velocity unit vector of interceptor 
%       LateralDiv is previous lateral divert 
%       magNCO is magnitude of previous commanded acceleration 
% 
%       This returns  
%       distMT is the target---> Interceptor distance 
%       VcMTTrue is true Closing velocity 
%       oldDistTrue is the next old distance true 
%       Vc is the current Closing velocity 
%       oldDist is the next old distance 
%       oldLOS is the Next old line of sight 
%       mnvr is the target maneuver 
%       Nlm is the current achieved acceleration 
%       GFM is the current guidance force 
%       magGFM is the magnitude of the guidance force 
%       magNC1 is the magnitude of the commanded acceleration 
%       comLatAccM is the current commanded lateral acceleration magnitude 
%       achLatAccM is the current achieved acceleration magnitude 
%       LateralDiv is the current lateral divert of the missile 
  
%   Copyright (c) 2004-2005 by Kursad YILDIZ 
  
global timeFlags updateTime navCoefM Vcfirst SSM1 SSM2 stateM1 stateM2... 
       maxG TMc; 
  
switch which 
    case 1 
        time = timeFlags(1,1); 
        deltaT = timeFlags(2,1); 
        txF = timeFlags(3,1); 
        txC = timeFlags(4,1); 
        updateT = updateTime(1); 
        txD = timeFlags(5,1); 
        navCoef = navCoefM(1); 
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        stateMX =  stateM1(:,1); 
        stateMY =  stateM1(:,2); 
        stateMZ =  stateM1(:,3); 
        AMc = SSM1(:,1:3); 
        BMc = SSM1(:,4); 
        CMc = SSM1(:,5)'; 
        DMc = SSM1(1,5); 
        mG = maxG(1); 
    case 2 
        time = timeFlags(1,2); 
        deltaT = timeFlags(2,2); 
        txF = timeFlags(3,2); 
        txC = timeFlags(4,2); 
        updateT = updateTime(2); 
        txD = timeFlags(5,2); 
        navCoef = navCoefM(2); 
        stateMX =  stateM2(:,1); 
        stateMY =  stateM2(:,2); 
        stateMZ =  stateM2(:,3); 
        AMc = SSM2(:,1:3); 
        BMc = SSM2(:,4); 
        CMc = SSM2(:,5)'; 
        DMc = SSM2(1,5); 
        mG = maxG(2); 
    otherwise 
        updateT = 0.15; 
end 
% Initial Values 
VcMTTrue = 0; 
mnvr = 0; 
GFM = [0;0;0]; 
magGFM = 0; 
comLatAccM = 0; 
achLatAccM = 0; 
ncM = [0;0;0]; 
magNC1 = magNC0; 
% --------------------------------------------------------------- 
LOSMTTrue = TargetX - MissileX;             %True Target-Missile Vector 
distMTTrue = magnitude(LOSMTTrue);          %True Target-Missile Distance 
  
%Apply transmission delay 
receivedPosT = sensedPos + (-Velocity .* txD); 
  
LOSMT = receivedPosT - MissileX;    %Line of Sight (LOS) Between Missile and Target     
distMT = magnitude(LOSMT);          %Target-Missile Distance 
  
if time > (deltaT + lounchT) 
    VcMTTrue = (oldDistTrue - distMTTrue) / deltaT;              %True Closing Velocity 
(Vc)          
    %Compute Control Acceleration at Only Data Update Intervals 
    if txF || (txC >= updateT)    
        % For the fist time of calculation we need 0 for Vc 
        switch which 
            case 1 
                if Vcfirst(1); 
                    oldDist = distMT; 
                    Vcfirst(1) = 0; % Never set Vc 0 again 
                end                 
            case 2 
                if Vcfirst(2); 
                    oldDist = distMT; 
                    Vcfirst(2) = 0; % Never set Vc 0 again 
                end 
        end         
        Vc = (oldDist - distMT) / updateT;                       % Closing Velocity (Vc) 
        %Compute Magnitude and Direction of Lateral Acceleration 
        unitOldLOS = unitVector(oldLOS);                         % Normalize Previous LOS 
        unitLOSMT = unitVector(LOSMT);                           % Normalize This LOS 
        deltaLOS = unitLOSMT - unitOldLOS; % Find LOS Change Direction (=Direction of 
Lateral Acceleration) 
        magLOSRate = magnitude(deltaLOS) / updateT;       % Magnitude of LOS Rate (rad/s) 
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        unitncM = unitVector(deltaLOS);                   % Lateral Acceleration Unit 
Vector 
        magNC1 = navCoef * magLOSRate * Vc;  % Magnitude of Lateral Acceleration (m/s^2) 
        ncM = magNC1 * unitncM;              % Lateral Acceleration Vector (m/s^2) 
        if time <= 90 
            Vc = abs(Vc);   % Never allow before real interception  
        end 
        %Reset counters/flags 
        switch which 
            case 1 
                timeFlags(3,1) = 0; 
                timeFlags(4,1) = 0; 
            case 2 
                timeFlags(3,2) = 0; 
                timeFlags(4,2) = 0; 
        end         
        oldDist = distMT; 
        oldLOS = LOSMT;   
    end %txF | (txC >= updateT)     
    %Compute Target Acceleration Perpendicular to LOS (Target Maneuver) 
    magaT = magnitude(a);  % Magnitude of Target Acceleration (m/s^2) 
    unitaT = a / magaT; %Target Acceleration Unit Vector 
    alfa = acos(dot(unitaT, -unitVector(LOSMT))); %Angle Between Target Acceleration Vec-
tor and LOS (rad) 
    magaPLOST = magaT * sin(alfa); %Target Acceleration Component Perpendicular to LOS 
(m/s^2)        
    mnvr = magaPLOST / gICMB; %Target Maneuver (g)     
    if TMc == 0 %Control System Dynamics Implementation 
        Nlm = ncM; 
    else 
        %Implement Control System Dynamics 
        %x-axis 
        nlMX = CMc * stateMX + DMc * ncM(1); 
        stateMX = AMc * stateMX + BMc * ncM(1); 
        %y-axis 
        nlMY = CMc * stateMY + DMc * ncM(2); 
        stateMY = AMc * stateMY + BMc * ncM(2); 
        %z-axis 
        nlMZ = CMc * stateMZ + DMc * ncM(3); 
        stateMZ = AMc * stateMZ + BMc * ncM(3); 
        switch which 
            case 1 
                stateM1 = [stateMX, stateMY, stateMZ]; 
            case 2 
                stateM2 = [stateMX, stateMY, stateMZ]; 
        end 
        Nlm = [nlMX; nlMY; nlMZ];  %Achieved lateral acceleration vector 
        if Nlm == [0;0;0] 
            Nlm = ncM; 
        end 
    end %TMc == 0 (Control System Dynamics Implementation) 
    % Guidance Force 
    magnlM = magnitude(Nlm);               %Magnitude of achieved lateral acceleration  
    comLatAccM = magNC1 / g;               %Commanded Lateral Acceleration (g) 
    achLatAccM = magnlM / g;               % Achieved Lateral Acceleration (g) 
    if achLatAccM >= mG 
        achLatAccM = mG; 
        magnlM = mG*g; 
        Nlm = magnlM*unitVector(Nlm); 
    end  
    LateralDiv = LateralDiv + abs(magnlM * deltaT);   %Lateral Divert (m/s)  
    %Compute Lateral Acceleration Perpendicular to Velocity Vector, Ignore Parallel Com-
ponent 
    nlPerM = Nlm - unitV * magnlM * cos(acos(dot(unitVector(Nlm), unitV)));   %Achieved 
Acceleration Vector Perpendicular to Velocity Vector (Use This) 
  
    GFM = nlPerM * Weight;                    % Guidance Force (N) (Perpendicular to LOS) 
  
    magGFM= magnitude(GFM); %Magnitude of guidance force 
end  
oldDistTrue = distMTTrue; %Record old Missile-target distance. 
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APPENDIX C. READ-ME  

This appendix contains the “read-me file” of the MATLAB® code given in Ap-

pendix B. The appendix is intended to help future users to easily modify the code. 

To work with the simulation, all MATLAB® functions given in Appendix B and  

POstage1_X.mat  and RCS1X_R.mat data files need to be copied to the same directory. 

After copying the files, type MultiTarget3D in the MATLAB® command window to run 

the simulation. 

All variable names specified in the functions are an abbreviated form of the origi-

nal names. The comment line next to each related variable explains the original long form 

of the variable. A “T” at the end of a variable refers to the target ICBM, an “M” refers to 

the interceptor ICBM, a “D” refers to a decoy, an “MT” refers to a variable that relates 

the target and the interceptor, and the “TD” refers to the variable that relates the decoy 

and the target. A “_1” or “_2” at the end of a variable refers to interceptor/target pairs. 

For this simulation, we assume that only two interceptions take place. 

The simulation runs in the ECEF (Earth-Centric, Earth-Fixed) Cartesian coordi-

nate system. All other coordinate variables should be converted to ECEF. The ICBM pa-

rameter includes the position, the launch angle, and the data matrix. The position of the 

ICBM, like all other positions defined in the simulation, is given in the geodetic coordi-

nate system. The longitude and the latitude of the related positions are converted to the 

ECEF Cartesian coordinate system by using the geo2cart.m, which assumes that the earth 

is a perfect sphere.  The launch angle of the ICBM is given in a topographic coordinate 

system, which assumes a local flat surface; top2cart.m converts this data to ECEF Carte-

sian coordinate system.  

The format of the input data matrix is given in Table  IV-8. reformDataMatrix.m 

converts this matrix to Table  IV-9.  

To change the parameters of the ICBM, the input data matrix needs to be 

changed. The position and the launch angle can be changed to any realistic value by 

modifying the related variable in the simulation.  
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To add more interception, only the if-blocks within the main while-loop need to be 

reintroduced. The new parameter should be distinguished by adding “_3” at the end of 

the variable. The scope.m and mash.m functions work autonomously. The if-blocks be-

fore these functions need to be modified to include newly added interception parameters.  



155 
 

 

LIST OF REFERENCES 

[1] “Boeing ground based interceptor (GBI)”, http://www.designation-
systems.net/dusrm/app4/gbi.html, last accessed June 09, 2005 

[2] D.C.Gompert, J.A.Isaacson, “Planning a ballistic missile defense system of sys-
tem”, RAND, National Defense Research Institute Issue paper, 1999 

[3] “Missile Defense Progress Report”, http://www.ceip.org/files/projects/ 
npp/pdf/MissileDefenseProgressReport.pdf,  last accessed June 09, 2005 

[4] UCS/MIT report on “Countermeasures: A Technical Evaluation of the Opera-
tional Effectiveness of the Planned US National Missile Defense System Appen-
dices A-E”, April 2000 

[5] Kubilay UZUN, “Requirements and limitations of boost–phase ballistic missile 
intercept systems”, Master’s Thesis, Naval Postgraduate School, Monterey, Cali-
fornia, September 2004 

[6] Gokhan Humali, “Sensor fusion for boost phase interception of ballistic missiles”, 
Master’s Thesis, Naval Postgraduate School, Monterey, California, 2004 

[7] Merrill L. SKOLNIK, “Introduction to radar systems”, Third edition, McGraw 
Hill, 2001 

[8] David C. JENN, “Radar and Laser cross section engineering”, AIAA,1995 

[9] E. Garrido, “Graphical user interface for a physical optics radar cross section pre-
diction code”, Master’s Thesis, Naval Postgraduate School, Monterey, California, 
2000 

[10] Personal conversation with Butch Caffall, Technical Director of MDA 

[11] Richard N. Johnson, “ Radar-Absorbing Material: A passive role in an active sce-
nario”, The international Countermeasure Handbook, 11th Edition, 2004 

[12] Fawwaz T. ULABY, “ Fundamentals of applied Electromagnetic”, Prentice Hall, 
2004 

[13] Kemal YUZCELIK, “Radar absorbing material design”, Master’s Thesis, Naval 
Postgraduate School, Monterey, California, September 2003 

[14] H.M. Musal, Jr., and D.C.Smith, “Universal Design chart for specular absorbers”, 
IEEE Transaction on Magnetics, vol 26, no 5, September 1990 

[15] Sh.V.MAMEDOV, Y.LENGER, S.BOLCAL, V.A ALEKPEROV, “Magnetodi-
electrical Polymer Composition Materials”, TUBUTAK, 1990 

[16] Emerson&Cumming, “Dielectric Material Chart”, Emerson&Cumming, 
http://www.eccosorb.com/ Dielectric_Chart.pdf, last accessed June 09, 2005 

[17] Ding SUN, “Measurement results of permittivity/permeability/loss Tangent of 
several microwave Absorbers”, PBAR note 599, 1998, http://www-bdnew 
.fnal.gov/pbar/documents/pbarnotes/pdf_files/PB599.PDF , last accessed June 09, 
2005 

http://www.designation-systems.net/dusrm/app4/gbi.html
http://www.designation-systems.net/dusrm/app4/gbi.html
http://www.ceip.org/files/projects/ npp/pdf/MissileDefenseProgressReport.pdf
http://www.ceip.org/files/projects/ npp/pdf/MissileDefenseProgressReport.pdf
http://www.eccosorb.com/ Dielectric_Chart.pdf
http://www-bdnew.fnal.gov/pbar/documents/pbarnotes/pdf_files/PB599.PDF
http://www-bdnew.fnal.gov/pbar/documents/pbarnotes/pdf_files/PB599.PDF


156 
 

 

[18] Sergei A. VALKIN, Lev N. SHUSTOV, Robert H. DUNWELL, “Fundemantals 
of Electronic Warfare”, Artech House, 2001 

[19] D.Curtis SCHLEHER, “Electronicwarfare in the information age”, Artech House, 
1999 

[20] Sherman W. MARCUS, “Dynamics and radar cross section density of chaff 
clouds”, IEEE Transaction on Aerospace and Electronic Systems, Vol. 40, No. 1, 
January 2004 

[21] T.A. WINCHESTER, “Pulsed radar return from a chaff cloud”, IEEE Proceeding-
F, vol. 139, No. 4, August 1992 

[22] Phillip E. Pace, Notes for EC3700 (Introduction to Joint Services Electronic War-
fare), Naval Postgraduate School, 2004 (unpublished) 

[23] American Physical Society Group’s report on “Boost-phase intercept system for 
national system”, 2003  

[24] “Electronic warfare and radar systems engineering handbook”, Naval Air Warfare 
Center, 1997 

[25] F.NERI, “Anti-Monopulse jamming techniques”, SBMO/IEEE MTT- SIMOC 
2001 proceeding (invited paper), 2001 

[26] T.Hun-Hau, “Effectiveness of off-board active decoys against anti-shipping mis-
sile” Master’s Thesis, Naval Postgraduate School, Monterey, California, Septem-
ber 1996. 

[27] A. Gelp et al, “Aplied optimal estimation”,  Second edition, MIT press, February 
1974 

[28] David Halliday, Robert Resnick and Jearl Walker, “Fundamentals of Physics”, 7th 
Edition, John Wiley & Sons, New York, 2005. 

[29] Y. Kashiwagi, “Prediction of ballistic missile trajectories”,  Memorandum 37, 
Defense Technical Information Center, June 1968 

[30] P. Zarchan, “Tactical and Strategic Missile Guidance”, American Institute of 
Aeronautics and Astronautics, Reston, Virginia, 2002 

[31] Robert Hutchins, Notes for EC3310, (Optimal Estimation: Sensor and Data Asso-
ciation), Naval Postgraduate School, 2005, (unpublished) 

[32] K.V.Ramachandra, “Kalman filtering techniques for radar tracking”, Marcel 
Dekker, Inc, 2000 

[33] S.S. Blackman, “Multiple-target tracking with radar application”, Artech House, 
1986 

[34] J.Ferrante, “A Kalman filter-based radar track data fusion algorithm applied to a 
selected ICBM case”, IEEE, 2004 

[35] X. Yu, J. Yihui,  Z. Yan, “Several methods of radar data fusion”, IEEE, 2002 

[36] D.L. Hall, “Mathematical techniques in multi sensor data fusion”, Artech House, 
1992 



157 
 

 

[37] A.T. Stair, J.D.Mill, “The midcourse space experiment (MSX)”, proceedings on 
Aerospace Conference, IEEE, 1997 

[38] D. Wright, L.Gronlung, “Decoys and discrimination in intercept test IFT-8”, Un-
ion of Concerned scientists Working Paper, March 2002 

[39] M.E Clark, “High range resolution techniques for ballistic missile targets”, IEE 
Colloquium on High Resolution Radar and Sonar, May 1999 

[40] X.Yu, M.R.Azimi-Sadjadi, “A neural network-based sequential bayes classifier 
for moving target discrimination”, International Joint Conference on Neural Net-
works, IEEE, 1999 

[41] S. E. El-khamy, F.A. Salem, “Improved Radar target identification and discrimi-
nation by matched frequency hopping spread spectrum (MFH/SS) signals and 
clipped radar-signature”, IEEE 4th International Symposium on Spread Spectrum 
Techniques and Applications Proceedings, September 1996 

[42] C.L. McCillough, B.V.Dasarathy, P.C.Lindberg, “Multi-level sensor fusion for 
improved target discrimination”, Proceedings of  35th Conference on Decision and 
Control,  December 1996 

[43] “Radar tracking, Kalman filtering, & Multi-sensor data fusion” notes of Applied 
Technology Institute short course, 2005, (unpublished) 

[44] C. Yang, S. Li, S. Mao, “Some problems of the application for multiple target 
tracking algorithm”, IEEE, 1995 

[45] S.K.Singh, M.Premalatha and G.Nair, “Ellipsoidal gating for an Airborne track 
while scan radar”, IEEE International Radar Conference, 1995 

[46] Y.Bar-Shalom, “Multitarget-multisensor tracking: Advanced application”, Artech 
House, 1990 

[47] D.B. Reid, “An Algorithm for tracking multiple targets”, IEEE Transaction on 
Automatic Control, Vol. AC-24, No. 6, December 1979 

[48] T. Bhattacharya, A. Preenji, T.J. Nohara, P.Weber, “Evaluation of fast MHT algo-
rithm”, RADARCON 98. Proceedings of the 1998 IEEE 

[49] M. de Feo, A. Graziano, R.Miglioli, A.Farina, “IMMJPDA versus MHT and Kal-
man filter with NN correlation: performance comparison”, IEE Proc.-Radar.Sonar 
Navig., Vol.144, No. 2, April 1997 

[50] S. Deb, K. R. Pattipati and Y. Bar-Shalom, “A Multisensor-Multitarget Data As-
sociation Algorithm for Heterogeneous Sensors”, IEEE Trans. Aerosp. Electronic 
Systems, AES-29(2):560-568, April 1993. 

[51] K.Chang, C. Chong, Y. Bar-shalom, “Joint Probabilistic data association in Dis-
tributed sensor Networks”, IEEE Transactions on Automatic Control, Vol. Ac-31, 
No. 10. October 1986 

[52] “Exoatmospheric kill vehicle”, http://www.missilethreat.com/systems/ekv_usa.html, 
last accessed June 09, 2005 

http://www.missilethreat.com/systems/ekv_usa.html


158 
 

 

[53] “A view to a kill”, http://www.llnl.gov/str/November02/Pertica.html, last ac-
cessed June 09, 2005 

[54] “Timeline: Missile defense 1944 – 2002”, http://www.pbs.org/wgbh/pages/ front-
line/shows/missile/etc/cron.html, last accessed June 09, 2005 

[55]  “Lockheed HOE”, http://www.designation-systems.net/dusrm/app4/hoe.html, last 
accessed June 09, 2005 

[56] “Lockheed ERIS”, http://www.designation-systems.net/dusrm/app4/eris.html,  
last accessed June 09, 2005 

[57] “Ground-based midcourse defense (GMD) System Exoatmospheric Kill Vehicle 
(EKV) data sheet”, http://www.raytheon.com/products/static/node4738.html, last 
accessed June 09, 2005 

[58] “Alternatives for boost-phase missile defense”, The Congressional Budget Office, 
July 2004 

[59] “Near field IR experiment (NFIRE)”, http://www.skyrocket.de/space/ 
doc_sdat/nfire.htm,  last accessed June 09, 2005 

[60] A. V. Jelalian, “Laser Radar system”, Artech House, 1992 

[61] Q.M. Lam, J.P. Hill, D. Cooke, “Improvement of laser pointing performance us-
ing a joint observer-based adaptive controller”, proceedings of  the American 
Control Conference, June 1994 

[62] P.E. Pace, “Low Probability Intercept Radar (PLI)”, Artech House, 2003 

[63] S. Josef, “On the feasibility of  ‘hit-to-kill’ in the interception of maneuvering tar-
gets”, Proceedings of the American Control Conference, AACC, 2001 

[64] R.M. Lloyd, “Physics of direct hit and near miss warhead technology”, AIAA, 
2001 

 
 

http://www.llnl.gov/str/November02/Pertica.html
http://www.pbs.org/wgbh/pages/ frontline/shows/missile/etc/cron.html
http://www.pbs.org/wgbh/pages/ frontline/shows/missile/etc/cron.html
http://www.designation-systems.net/dusrm/app4/hoe.html
http://www.designation-systems.net/dusrm/app4/eris.html
http://www.raytheon.com/products/static/node4738.html
http://www.skyrocket.de/space/ doc_sdat/nfire.htm
http://www.skyrocket.de/space/ doc_sdat/nfire.htm


159 
 

 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, VA  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, CA  
 

3. Dr. Dan Boger 
Information Sciences Department 
Monterey, CA 
 

4. Dr. Phillip E. Pace 
Department of Electrical and Computer Engineering 
Monterey, CA 
 

5. Dr. Murali Tummala 
Department of Electric and Computer Engineering 
Monterey, CA 
 

6. Captain Kursad Yildiz 
Turkish Air Force 
Ankara, Turkey 

 
7. Captain Kubilay Uzun 

Turkish Air Force 
Ankara, Turkey 
 

8. Mr. Dale S. Caffall 
Missile Defense Agency 
Washington, D.C 

 
9. Prof. Bret Michael 

Department of Computer Science 
Monterey,CA 

 
10. Prof. Mautak Shing 

Department of Computer Science 
Monterey,CA 

 
11. Prof. Doron Drusinsky 

Department of Computer Science 
Monterey,CA 

 



160 
 

 

12. LTC Tom Cook 
Department of Computer Science 
Monterey,CA 
 
 
 
 
 
 


	NAVAL
	POSTGRADUATE
	SCHOOL
	MONTEREY, CALIFORNIA
	ELECTRONIC ATTACK AND SENSOR FUSION TECHNIQUES FOR BOOST-PHA
	by
	Kursad Yildiz
	June 2005
	Thesis Advisor:  Phillip E. Pace
	Co–Advisor:  Murali Tummala
	THESIS
	Approved for public release; distribution is unlimited
	THIS PAGE INTENTIONALLY LEFT BLANK
	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	Public reporting burden for this collection of information i
	1. AGENCY USE ONLY
	2. REPORT DATE
	June 2005
	3. REPORT TYPE AND DATES COVERED
	Master’s Thesis
	4. TITLE AND SUBTITLE:  Electronic Attack and Sensor Fusion 
	5. FUNDING NUMBERS
	6. AUTHOR(S)  Kursad Yildiz
	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
	Center for Joint Services Electronic Warfare
	Naval Postgraduate School
	Monterey, CA  93943-5000
	8. PERFORMING ORGANIZATION REPORT NUMBER
	9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
	Missile Defense Agency
	10. SPONSORING/MONITORING
	AGENCY REPORT NUMBER
	11. SUPPLEMENTARY NOTES The views expressed in this thesis a
	12a. DISTRIBUTION / AVAILABILITY STATEMENT
	Approved for public release; distribution is unlimited
	12b. DISTRIBUTION CODE
	A
	13. ABSTRACT (maximum 200 words)
	The first objective of this thesis is to investigate the eff
	14. SUBJECT TERMS  Boost-phase Ballistic Missile Intercept, 
	15. NUMBER OF PAGES
	178
	16. PRICE CODE
	17. SECURITY CLASSIFICATION OF REPORT
	Unclassified
	18. SECURITY CLASSIFICATION OF THIS PAGE
	Unclassified
	19. SECURITY CLASSIFICATION OF ABSTRACT
	Unclassified
	20. LIMITATION OF ABSTRACT
	UL
	NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
	Prescribed by ANSI Std. 239-18
	THIS PAGE INTENTIONALLY LEFT BLANK
	Approved for public release; distribution is unlimited
	ELECTRONIC ATTACK AND SENSOR FUSION TECHNIQUES FOR BOOST- PH
	Kursad Yildiz
	Captain, Turkish Air Force
	B.S., Turkish Air Force Academy, 1995
	Submitted in partial fulfillment of the
	requirements for the degree of
	MASTER OF SCIENCE IN SYSTEMS ENGINEERING
	from the
	NAVAL POSTGRADUATE SCHOOL
	June 2005
	Author:  Kursad Yildiz
	Approved by:  Phillip E. Pace
	Thesis Advisor
	Murali Tummala
	Co–Advisor
	Dan C. Boger
	Chairman, Department of Information Sciences
	THIS PAGE INTENTIONALLY LEFT BLANK
	ABSTRACT
	The first objective of this thesis is to investigate the eff
	THIS PAGE INTENTIONALLY LEFT BLANK
	TABLE OF CONTENTS
	I. INTRODUCTION 1
	A. BOOST-PHASE BALLISTIC MISSILE DEFENSE 1
	B. PRINCIPAL CONTRIBUTION 3
	C. THESIS OUTLINE 5
	II. ELECTRONIC ATTACK EFFECTS 7
	A. PREVIOUS SCENARIO AND SIMULATION 7
	B. TO BE SEEN OR NOT TO BE SEEN 8
	1. Radar Cross Section 9
	2. RCS Reduction 11
	a. Shaping 12
	b. Passive Cancellation 12
	c. Active Cancellation 12
	d. Material Selection and Coating (Radar Absorption Material
	3. Effect of RCS Reduction 20
	C. CHAFF CLOUDS 23
	1. The RCS of the Chaff Cloud 23
	2. Consideration of Chaff Tactics to Be Used 24
	a. False Target 25
	b. Screening 25
	c. Forward-Fired Chaff 25
	d. Obscuration 26
	3. Effect of the Chaff Cloud 29
	D. ACTIVE JAMMING 31
	1. Jamming Power Density 31
	2. Jamming Effects 35
	E. ACTIVE DECOYS 41
	1. Repeater Decoys 41
	2. Passive Reflectors 43
	3. Effect of Decoys 43
	F. SUMMARY 46
	III. ADVANCED FUSION TECHNIQUES FOR SINGLE TARGET 49
	A. KALMAN FILTERING 49
	1. System Model 49
	2. Dynamic System Matrices 50
	3. Noise and Covariance 52
	4. Fusion Algorithm 56
	5. Effects over Electronic Attacks 57
	a. Effects Against Jamming 58
	b. Effect against RCS Reduction 60
	c. Effect Against Chaff 62
	d. Effect Against Decoys 62
	e. Effect Against Combined Attack 63
	B. BAYESIAN FUSION 65
	1. The Theory of Bayesian Fusion 65
	2. Bayesian Fusion Algorithm 66
	3. Effect of Bayesian Fusion 67
	C. SUMMARY 69
	IV. MULTI-TARGET TRACKING AND KILL VEHICLE REQUIREMENTS 71
	A. MTT SYSTEM 71
	1. Target Discrimination 72
	2. Track Initiation 75
	3. Correlation 76
	4. Association 80
	5. MTT Algorithm Used 85
	B. KILL VEHICLE 91
	1. Evolution of Kill Vehicles 91
	2. On-Board Sensors 95
	3. Kill Vehicle Requirements for Intercept 98
	4. The Final Simulation with KVs 101
	C. SUMMARY 108
	V.  CONCLUSION 111
	A. SUMMARY OF THE WORK 111
	B. SIGNIFICANT RESULTS 112
	C. SUGGESTIONS FOR FUTURE WORK 112
	APPENDIX A.  CODE FLOWCHART 113
	APPENDIX B.   MATLAB® CODE 121
	A. MULTITARGET3D ( )- (MAIN SIMULATION) 121
	B. GEO2CART ( ) 139
	C. TOP2CART ( ) 139
	D. REFORMDATAMATRIX ( ) 140
	E. MAGNITUDE ( ) 140
	F. MOVEICBM ( ) 141
	G. UNITVECTOR ( ) 142
	H. RHO ( ) 142
	I. MOVEDECOYS ( ) 142
	J. SCOPE ( ) 143
	K. MASH ( ) 145
	L. HK ( ) 148
	M. MOVEINTERCEPTOR ( ) 148
	N. GUIDANCE ( ) 150
	APPENDIX C.  READ-ME 153
	LIST OF REFERENCES 155
	INITIAL DISTRIBUTION LIST 159
	LIST OF FIGURES
	Figure I�1 Three phases of a ballistic missile attack (From
	Figure I�2 The subsystem of the boost-phase defense system 
	Figure II�1 Typical values of the RCS (After [8]) 10
	Figure II�2 Full-Scale Models of the missile at different S
	Figure II�3 Specular Reflection (From [13]). 16
	Figure II�4 Universal Design Chart for zero specular reflec
	Figure II�5 Comparison of RCS for stage-1. The red line rep
	Figure II�6 Position error introduced by fusion system when
	Figure II�7 Closing velocity versus time during the interce
	Figure II�8 Maneuver of interceptor toward the missile. The
	Figure II�9 The chaff corridor needed to cover the trajecto
	Figure II�10 Attenuation of the electric field within the c
	Figure II�11 Representation of the obscuration scenario. 28
	Figure II�12 Miss Distance versus target’s entrance time to
	Figure II�13 Command lateral acceleration during flight. En
	Figure II�14 Jamming power density at the RF-1 radar antenn
	Figure II�15  Jamming power density at the RF-2 radar anten
	Figure II�16 Jamming power density at the RF-3 radar antenn
	Figure II�17 Signal to Jam Ratio. Pj = 10 W, Bj= 4 GHz 35
	Figure II�18  RMS errors in range introduced while target i
	Figure II�19 RMS errors in angle introduced while target is
	Figure II�20 Average power versus weight of the narrowband 
	Figure II�21 Signal to Jam Ratio: Pj = 10 kW, Bj= 4 GHz 38
	Figure II�22  RMS errors in range introduced while target i
	Figure II�23 RMS errors in angle introduced while target is
	Figure II�24 Position error introduced using triangulation.
	Figure II�25 Lateral acceleration of the interceptor while 
	Figure II�26 Typical repeater block diagram (From [26]) 42
	Figure II�27 Miss Distance as a function of decoy (a) relea
	Figure II�28 Radar resolution cell 45
	Figure II�29 Target-decoy separation when the decoy is rele
	Figure III�1 Target maneuver (acceleration) during boost ph
	Figure III�2 Position error introduced by the fusion center
	Figure III�3 Position error introduced by Pj = 10 kW and Bj
	Figure III�4 The position error introduced by triangulation
	Figure III�5 The command lateral acceleration during the fl
	Figure III�6 Position error introduced by the RF sensor whe
	Figure III�7 Guidance command during the flight when using 
	Figure III�8 RCS seen by the RF sensor of the simulation. 6
	Figure III�9 Position error with decoy release. 63
	Figure III�10 Position error during combination attack. 64
	Figure III�11 The command lateral acceleration during the c
	Figure III�12 The illustration of the pdf intersection volu
	Figure III�13 The position error produced by the Bayesian f
	Figure III�14 The affect of the combination attack over Bay
	Figure III�15 The command lateral acceleration during the c
	Figure IV�1 The block diagram of multi-target-tracking (MTT
	Figure IV�2 The suggested MTT block diagram with target dis
	Figure IV�3 Spectral intensity of Titan IIB at an angle of 
	Figure IV�4 The general ellipsoidal gate in three dimension
	Figure IV�5 The rectangular versus ellipsoidal gating of pr
	Figure IV�6 Ambiguities of the data association (After [33
	Figure IV�7 The MTT algorithm position error for a normal-c
	Figure IV�8 The MTT algorithm target position error when it
	Figure IV�9 MTT algorithm target position error when both t
	Figure IV�10 MTT algorithm position error, when the combine
	Figure IV�11 The HOE (From [53]). 93
	Figure IV�12 The ERIS (From [56]) 94
	Figure IV�13 Raytheon EKV (From [57]) 95
	Figure IV�14 Properties of terrestrial- and space-based kil
	Figure IV�15 The perfect tracking case (a) Guidance and (b)
	Figure IV�16 The no-EA case (a) Guidance and (b) Closing ve
	Figure IV�17 Combined EA case (a) Guidance and (b) Closing 
	Figure IV�18 The normal case (a) Guidance and (b) Closing v
	Figure IV�19 The no-EA case lateral acceleration for the MT
	Figure IV�20 The no-EA case closing velocity for the MTT al
	Figure IV�21 The no-EA case Lateral Divert for the MTT algo
	Figure IV�22 35 s launch delay Velocities 108
	Figure A�1 Flowchart-- data start-up (1 of 8) 113
	Figure A�2 Flowchart-- data start-up cont’  (2 of 8) 114
	Figure A�3 Flowchart-- first target motion (3 of 8) 115
	Figure A�4 Flowchart-- second target motion (4 of 8) 116
	Figure A�5 Flowchart-- measurement and MTT (5 of 8) 117
	Figure A�6 Flowchart-- first interceptor motion (6 of 8) 118
	Figure A�7 Flowchart-- second interceptor motion (7 of 8) 11
	Figure A�8 Flowchart-- finalize the simulation (8 of 8) 120
	THIS PAGE INTENTIONALLY LEFT BLANK
	LIST OF TABLES
	Table II�1 EAs That Can Degrade Defense Effectiveness 7
	Table II�2 New Material properties 18
	Table II�3 Generic Radar Parameters (After [5]) 31
	Table IV�1 Peak radiation emitted by objects at different t
	Table IV�2 Gate Thresholds and the probability mass  inside
	Table IV�3 Assignment Matrix for Figure IV�6 82
	Table IV�4 The measurement output format of the “scope.m” f
	Table IV�5 The measurement output format for the jamming ca
	Table IV�6 Characteristics of the Space Laser (From [23]).
	Table IV�7 FMCW LPI radar parameter for 0.5 m resolution at
	Table IV�8 The format of the input data matrix. 101
	Table IV�9 The format of data matrix that the simulation us
	THIS PAGE INTENTIONALLY LEFT BLANK
	ACKNOWLEDGMENTS
	I would like to thank my wife Filiz and my daughter Ecenur f
	I would like to thank my thesis advisors, Professor Phillip 
	This work was supported by the Missile Defense Agency.
	THIS PAGE INTENTIONALLY LEFT BLANK
	INTRODUCTION
	A. BOOST-PHASE BALLISTIC MISSILE DEFENSE

	The U.S. effort to develop a non-nuclear anti-ballistic miss
	The ballistic missile defense system can be divided into thr
	Figure I�1 Three phases of a ballistic missile attack (From
	Defense against the terminal phase is difficult, since the d
	Recently, most of the effort has been focused on interceptin
	For defense purposes, the most straightforward way of defeat
	Figure I�2 The subsystem of the boost-phase defense system
	As the IR and RF sensors continue tracking the target, the s
	B. PRINCIPAL CONTRIBUTION

	This research investigates the effects of the ballistic miss
	After the target and the interceptor ballistic missile are d
	The single-target simulation from [5] was recoded into func
	A multi-target, multi-interceptor scenario was developed nex
	The boost-phase defense simulations were constructed around 
	Each interceptor flies until reaching an optimum position, o
	C. THESIS OUTLINE

	Chapter II analyzes the effects of the EA on the RF sensor s
	Chapter III investigates the advanced fusion center algorith
	Chapter IV considers the multi-target scenario and the kill 
	Chapter V provides concluding remarks.
	Appendix A shows the flowchart of the final simulation. Appe
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	ELECTRONIC ATTACK EFFECTS
	This chapter presents the effect of the EA on the RF sensors
	Table II�1 EAs That Can Degrade Defense Effectiveness
	Radar absorbing materials for reducing the radar cross secti
	Radar decoys to lure the radar tracking
	Coated glass fiber chaff for obscuring the target echo
	Deception jamming for forcing radar to lose the track
	A. PREVIOUS SCENARIO AND SIMULATION

	In this section, the scenario and the simulation described i
	To evaluate the scenario, a 3D ballistic-missile interceptio
	For the target ICBM, both [5] and [6] used a three-stage m
	For the interceptor ICBM, three generic models ware investig
	Both [5] and [6] also explored the specifications for the 
	B. TO BE SEEN OR NOT TO BE SEEN

	ICBM attack is considered to be detected via electronic syst
	In this section, we deal with the RCS reduction to reduce th
	Radar Cross Section

	Radar performance is directly related to the RCS of a target
	where  is radiated power, is gain of the radar antenna, is w
	The only parameter independent of the radar system is the RC
	In terms of the incident and scattered electric field intens
	where R is the range to the target.  The RCS is affected by 
	Figure II�1 Typical values of the RCS (After [8])
	The RCS of the three-stage generic ICBM target was predicted
	Figure II�2 Full-Scale Models of the missile at different S
	RCS Reduction

	When talking about the reduction of the RCS, four approaches can be considered ?[8]: 1) target shaping, 2) passive cancellation, 3) active cancellation, and 4) materials selection
	Shaping

	Generally, the shaping is considered to be the first and mos
	Reduction of the RCS cannot be done for the entire aspect an
	Passive Cancellation

	This method is better known as impedance loading [8]. It ca
	Active Cancellation

	This method involves modifying and processing the received r
	Material Selection and Coating (Radar Absorption Material)

	Using radar absorption material (RAM) is another way to redu
	The amount of loss in the material is determined by the loss
	Theorem 1 [8]: “if a plane electromagnetic wave is incident
	Theorem 2 states that “if a plane wave is incident on a body
	Both theorems are derived from Maxwell’s equations. Now, we 
	Composite absorbers are produced by using existing materials
	To apply the RAM, there are two primary approaches: the “Sal
	Which frequency bands need to be covered?
	Should coverage be applied for the entire band or for a spec
	Is the RAM used to attenuate all reflections or just for tra
	Will the RAM be used in a closed or open environment?
	What kind of environmental force will affect the RAM: salt, 
	What mechanical stresses will be placed on the RAM: vibratio
	What is the expected lifetime of the RAM?
	When all these questions are answered, we will know the elec
	After answering the questions, we conclude that the material
	Finally we may need a composite material containing titanium
	where , and  is conductivity, and  are the permeability and 
	perfect dielectric: ,
	imperfect dielectric: , and
	good Conductor:
	where   is the loss tangent of the medium, and are imaginary
	Our alloy seems to be a very good conductor and can be accep
	Figure II�3 Specular Reflection (From [13]).
	The reflection coefficient is the ratio between incident and
	where is the characteristic impedance, and  can be defined u
	where come from the absorption material and the backing mate
	If we normalize  with, we have a transcendental equation wit
	For our case, the backing material is PEC so . In this case,
	The six unknown can be reduced to four by normalizing with  
	In terms of new parameters, our transcendental equation is n
	By solving this equation, we can create the Universal design
	We assume that the composite material consists of titanium, 
	Figure II�4 Universal Design Chart for zero specular reflec
	Table II�2 New Material properties
	Relative Permittivity
	Ferrite-50
	Carbonyl Iron
	Silicone Rubber
	Titanium
	Nickel
	Total Density
	0.49
	7.87
	0.98
	4.5
	8.9
	Density (gr/cm^3)
	1.83
	Real
	21
	4
	3
	1
	1
	Imaginary
	13.86
	0.23
	0.225
	0
	0
	TOTAL
	Found
	Needed
	Percentile
	0.6
	0
	0.2
	0.1
	0.1
	1
	1
	New Material
	AIM
	Loss Tangent
	Real
	13.4
	12
	0.623955
	Imaginary
	8.361
	12
	Our computation concludes that the composite material needs 
	As shown in the table, the new composite material has a dens
	Now, we must determine the permeability of the layer. By app
	By using Figure II- 4 (depicted as a line) or using the MATL
	Finally, we determine the permeability of the composite mate
	By using  and  and editing “utilities” in the POFACETS [9],
	Figure II�5 Comparison of RCS for stage-1. The red line rep
	As shown in Figure II�5, the composite material achieves an
	Effect of RCS Reduction

	Figure II�6 plots the magnitude of the position error when 
	Figure II�6 Position error introduced by fusion system when
	When a large difference occurs in the average sensed positio
	Figure II�7 Closing velocity versus time during the interce
	The fusion algorithm used in Figure II�7 is an arithmetic a
	Figure II�8 Maneuver of interceptor toward the missile. The
	C. CHAFF CLOUDS

	Chaff is the oldest, but still the most widely used, passive
	A chaff cloud can be dispensed in many ways: a) by creating a corridor by continuous chaff dropping (moved by the effect of wind); b) by dispensing chaff bundles to simulate false
	The RCS of the Chaff Cloud

	The RCS of the chaff cloud is a key aspect of this method, s
	The determination of the chaff cloud RCS can be approximated via ?[20]: a) an aerodynamic solution that defines the cloud parameters as a function of space and time; or b) an elect
	where is the back-scattering coefficient in ,  and  are the 
	Chaff is composed of a large number of shorted antenna dipol
	where, is the length of the dipole, and  is the gain of the 
	Consideration of Chaff Tactics to Be Used

	There are many ways to use chaff to degrade the radar perfor
	False Target

	Dispensing a bundle of chaff at various time intervals is on
	Screening

	Screening dispenses the chaff in order to create a corridor 
	Figure II�9 The chaff corridor needed to cover the trajecto
	Forward-Fired Chaff

	This technique uses a missile to launch a chaff rocket to th
	Let us assume that the volume is a rectangular box with a le
	where is the geometrically projected area of the cloud, n is
	Obscuration

	Obscuration is a method that degrades the radar performance 
	where is the incidence flux,  is the one-way antenna gain in
	As in [18], we assume that the scattered radiation is isotr
	Figure II�10 Attenuation of the electric field within the c
	From the above assumption, the degree of attenuation of the 
	where  is the average RCS density of the chaff cloud, and is
	where. The radar attenuation in range is found by using , wi
	Figure II�11 Representation of the obscuration scenario.
	To find out where the degradation factor in the radar range 
	where for aluminized glass chaff, which has a density of 255
	Effect of the Chaff Cloud

	Of the chaff techniques discussed above, only the forward-fi
	The average miss distance when not using chaff is 15 m. The 
	Figure II�13 shows the command lateral acceleration during 
	Figure II�12 Miss Distance versus target’s entrance time to
	Figure II�13 Command lateral acceleration during flight. En
	D. ACTIVE JAMMING

	In this section, we will discuss the effect of jamming by th
	Jamming Power Density

	The power density returned from target ICBM must compete wit
	Table II�3 Generic Radar Parameters (After [5])
	Parameter
	Value
	Frequency
	10 GHz (X–Band)
	Peak Power
	1 MW
	Antenna Gain
	50 dB
	Beamwidth
	0.50.5 degrees
	Pulsewidth
	50
	PRF
	150 Hz
	Number of Pulses Integrated
	20
	Receiver Noise Factor
	4
	The internal noise can be calculated as in [7]:
	where is Boltzmann’s constant, is standard temperature in de
	where are the jammer power, antenna gain toward the intended
	where are the azimuth and the elevation beamwidth in  degree
	where is the aperture efficiency assumed to be unity, and is
	When 10 W of jamming power are used to generate the noise ja
	Even in the worst case, in which the EA system is a broadban
	Figure II�14 Jamming power density at the RF-1 radar antenn
	Figure II�15  Jamming power density at the RF-2 radar anten
	Figure II�16 Jamming power density at the RF-3 radar antenn
	Jamming Effects

	The effect of the jamming is to force the radar to use angle
	The simulation runs for a jammer power of 10 W and a bandwid
	Figure II�17 Signal to Jam Ratio. Pj = 10 W, Bj= 4 GHz
	Figure II�18  RMS errors in range introduced while target i
	Figure II�19 RMS errors in angle introduced while target is
	The average power of the jammer may also be increased. Figur
	Figure II�20 Average power versus weight of the narrowband 
	If we increase the jammer power to 10 kW while keeping the b
	Figure II�21 Signal to Jam Ratio: Pj = 10 kW, Bj= 4 GHz
	Figure II�22  RMS errors in range introduced while target i
	Figure II�23 RMS errors in angle introduced while target is
	If the jamming denies the range detection and forces the rad
	Figure II�24 Position error introduced using triangulation.
	Figure II�25 Lateral acceleration of the interceptor while 
	E. ACTIVE DECOYS

	In this section, the effect of active decoys will be investi
	The monopulse radar has a natural defense against EAs. Moder
	There are two types of decoys in use. The first is a towed d
	Repeater Decoys

	To apply the seduction, the decoy repeater needs to radiate 
	Figure II�26 Typical repeater block diagram (From [26])
	The repeater performance can be defined in two ways: (a) the
	where is the repeater receiver antenna gain, is the repeater
	where R is the range to the missile, is the maximum repeater
	If the distance between the decoy and the dispensing platfor
	where is defined as the SJR.
	Passive Reflectors

	Some good reflector shapes can also produce high RCS.  The r
	Effect of Decoys

	In the simulation, the decoys are not modeled in detail. Onl
	(a)      (b)
	Figure II�27 Miss Distance as a function of decoy (a) relea
	As shown in Figure II�27, when the decoy’s release time app
	A representation of the radar resolution cell is shown in Fi
	Figure II�28 Radar resolution cell
	Figure II�29 shows the ICBM-decoy separation for various re
	(a)
	(b)      (c)
	Figure II�29 Target-decoy separation when the decoy is rele
	F. SUMMARY

	This chapter investigated the EAs that can be used against R
	All countermeasures are effective over a poorly designed fus
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	ADVANCED FUSION TECHNIQUES FOR SINGLE TARGET
	This chapter presents an advanced fusion algorithm, using a 
	A. KALMAN FILTERING

	In this section, we will define the system model and the alg
	An optimal estimator is a computational algorithm that proce
	System Model

	The fundamental system model that was used in the 3-D simula
	where is the gravitational constant, is the mass of Earth, a
	The net forces acting on the missile are explaned as
	where is the trust vector, which is in the direction of the 
	site direction of the unit vector of the position. Before gi
	Unless otherwise stated, the missile has a perfect aerodynam
	where is the in-stage fuel consumption in , is the gravitati
	The variant acceleration motion model is given in . The posi
	where is the time index of the discrete time, is the time in
	Dynamic System Matrices

	All vectors have three dimensions that can be represented in
	where the first three variables define the position of the m
	where is the state vector defined in , is the state transiti
	The radar sensor can measure the target’s range, azimuth, an
	where  is measurement vector that can be defined as
	is the measurement matrix, which can be defined as
	and is the measurement (sensor) error, which has a covarianc
	The only unknown matrix, the transition matrix, can be found
	where
	and,  andare the magnitude of the position and the velocity 
	Noise and Covariance

	The noise terms defined above are assumed to be zero mean (i
	where is the covariance operator, and all noise sequences ar
	The sensor, which tracks the target, has known measurement n
	where is the beamwidth of the radar in the related angular d
	The covariance of the measurement will be
	Because the radar converts the polar measurement into Cartes
	using the conversion matrix [12]: where is the radius of th
	Let, a nonlinear transformation of x. We know that for a sma
	where this is the first order Taylor series expansion about 
	where superscript T is the matrix transpose, andis the error
	By taking the gradient of the transformation evaluated at th
	where subscript m stands for measured value at time k.
	The process (plant) noise must be modeled to account for the
	where the maneuver correlation coefficient,, is given in ter
	The is the maneuver standard deviation, and is a zero-mean G
	Figure III�1 Target maneuver (acceleration) during boost ph
	The maximum of the acceleration is 4.89g. For every stage ch
	where is an empirically derived process noise coefficient, w
	Fusion Algorithm

	Because the simulation runs using an invariant time interval
	where N is the total number of radars, is the measurement fr
	where is the trace operator, and is the mapped measurement c
	The initial covariance, , is calculated using the measuremen
	where is the fused mapped measurement covariance matrix, and
	Prediction
	Correction
	where is the Kalman gain at given time, and  is a identity m
	Effects over Electronic Attacks

	The main advantage of the Kalman filtering-based fusion algo
	(a)      (b)
	Figure III�2 Position error introduced by the fusion center
	Effects against Jamming

	The effect of the individual EA techniques while using the K
	Figure III�3 Position error introduced by Pj = 10 kW and Bj
	Figure III�4 and Figure III�5 show the effect of the Kalma
	Figure III�4 The position error introduced by triangulation
	As shown in Figure III�5, the lateral commanded acceleratio
	Figure III�5 The command lateral acceleration during the fl
	Effect against RCS Reduction

	The RCS reduction reduces the SNR of the target. A low RCS t
	Figure III�6 shows the position error when using the reduce
	The average miss distance is 15 m. Note that the position of
	Figure III�6 Position error introduced by the RF sensor whe
	Figure III�7 Guidance command during the flight when using 
	Figure III�8 RCS seen by the RF sensor of the simulation.
	Effect against Chaff

	The effect against chaff is less complicated. If the chaff-c
	Effect against Decoys

	The effect of the decoys comes from the track transfer to th
	Figure III�9 Position error with decoy release.
	Effect against Combined Attack

	A combined attack might be applied by the target. It can inc
	Figure III�10 shows the tracking position error caused by t
	Figure III�10 Position error during combination attack.
	Figure III�11 The command lateral acceleration during the c
	B. BAYESIAN FUSION

	In this section, we will investigate the Bayesian approach f
	Although [6] explored the algorithm, data used were from th
	The Theory of Bayesian Fusion

	The Bayesian approach is simply a maximum a posteriori techn
	where is a priori pdf of the state estimation andis the cond
	The Bayesian fusion can be helpful in determining the probab
	The drawbacks of this method are [36]:
	Difficulty in defining a priori pdf.
	Complexity when there are multiple potential hypotheses and 
	Requirement that competing hypotheses be mutually exclusive.
	Lack of the ability to assign general uncertainties.
	Finally, the computation complexity of the algorithm calcula
	Bayesian Fusion Algorithm

	The algorithm uses three RF sensors that are not collocated.
	where is the first moment of the measurement vector, , and i
	The conditional pdf of  posteriori can be written as
	where the covariance comes from the state estimates.
	The probabilities between the two points can be found from i
	Figure III�12 The illustration of the pdf intersection volu
	To achieve merging the previously used fusion algorithm, we 
	The position error introduced by Bayesian fusion is shown in
	Figure III�13 The position error produced by the Bayesian f
	Effect of Bayesian Fusion

	The Bayesian fusion produces more stable results than the Ka
	In the worst case of using a combination attack by the targe
	The computation complexity of the Bayesian fusion algorithm 
	shown. The time consumption can be reduced if we use the sub
	Figure III�14 is the position error introduced by the Bayes
	Figure III�14 The affect of the combination attack over Bay
	Figure III�15 shows the command lateral acceleration during
	Figure III�15 The command lateral acceleration during the c
	C. SUMMARY

	In this chapter, an advanced fusion algorithm is introduced.
	Another advanced fusion algorithm is the Bayesian fusion, wh
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	MULTI-TARGET TRACKING AND KILL VEHICLE REQUIREMENTS
	In this chapter, we will address multi-target and KV require
	A. MTT SYSTEM

	The basic MTT system block diagram is shown in Figure IV�1.
	Figure IV�1 The block diagram of multi-target-tracking (MTT
	In the beginning, sensors are needed to detect the signal fr
	Target Discrimination

	Target discrimination is not actually a part of an MTT algor
	Figure IV�2 The suggested MTT block diagram with target dis
	Work concerning target discrimination has generally focused 
	References [37], [38], [40], and [2] discuss the IR sens
	To discriminate the ICBM target at boost-phase, we need to a
	Contrary to a mid-course target, we have an advantage with a
	Figure IV�3 Spectral intensity of Titan IIB at an angle of 
	Because the peak radiation emitted at different temperatures
	Table IV�1 Peak radiation emitted by objects at different t
	Temperature of Object (K)
	Radiation Band Used to Track Object
	1000
	2.9
	Short-wave infrared
	675
	4.3
	Medium-wave infrared
	450
	6.4
	Medium-to-long-wave infrared
	300
	10
	Long-wave infrared
	180
	16
	Long-wave infrared
	Since we need to know the background effect at any level in 
	An exact pattern of ballistic missile plume luminosity durin
	Using IR sensors is not enough for discrimination purposes, 
	The RF sensor can use the RCS data that was investigated in 
	rithm to discriminate the target in question. Using a hidden
	In addition to those signature types, the ICBM has a continu
	Finally, “high range resolution techniques for ballistic mis
	Track Initiation

	A definition of “new” tracks is given in [43]:  “combinatio
	A track initialization can be divided into two steps:
	Initiation of a tentative track when the measurements from a
	The confirmation of a new track is a process in which the ne
	If any of the tracks are not updated with suitable correlate
	The initiation algorithm should be implemented separately fr
	No track initiation algorithms are implemented and addressed
	Correlation

	The correlation process assumes that the existence of an ini
	Correlation is done to relate the observation or measurement
	To construct a realistic simulation, all uncorrelated observ
	Gating is a window constructed around the predicted measurem
	We assume that the motion of the target is described as in ,
	where  is the measurement matrix at time k, and is the predi
	where is the known transition matrix, and is the previous st
	where  is the predicted covariance of the state, and is foun
	where is the previous state covariance.
	For gating to work properly, the measurement’s individual co
	The size and the shape of the gate can be defined in various
	where  is the norm of the residual and  is the maximum likel
	where is the probability of detection,  is the new source de
	The gate defined in  as the most general gate, which is know
	Figure IV�4 The general ellipsoidal gate in three dimension
	The value of the gate thresholds can be found by using . Chi
	If  can be transformed into its principal axes, which are of
	where ,, are the measured range, the elevation, and the azim
	If each of the components is Gaussian distributed, then thei
	where the first part of the right-hand side of the equation 
	Table IV�2 Gate Thresholds and the probability mass  inside
	M       \     G
	1
	4
	9
	16
	1
	0.683
	0.954
	0.997
	0.99994
	2
	0.393
	0.865
	0.989
	0.9997
	3
	0.199
	0.739
	0.971
	0.9989
	If we define the gate parameter separately for each dimensio
	then we have defined the rectangular gate.
	The rectangular gate is the simplest gating technique that i
	Figure IV�5 is a representation of the final fact that, for
	Figure IV�5 The rectangular versus ellipsoidal gating of pr
	As a final point, while the volume of the rectangular gate i
	Association

	Data association is the second part of a MTT. Association is
	Ambiguities arise when an observation lies within multiple t
	Figure IV�6 Ambiguities of the data association (After [33
	The association algorithm can be divided in to two categorie
	We can create an assignment matrix by using the example in F
	Maximizing the likelihood function means minimizing the stat
	Table IV�3 Assignment Matrix for Figure IV�6
	Measurements #1
	Measurements #2
	Measurements #3
	Measurements #4
	Track #1
	9
	X
	4
	X
	Track #2
	X
	5
	X
	X
	Track #3
	8
	X
	X
	3
	For the optimal case, this algorithm gives the highest numbe
	where, , and  are the number of measurements and the number 
	The total number of combinations can be increased exponentia
	The track-splitting algorithm is another way of association 
	We chose to use the all-neighbors-type of approach, which us
	The number of targets is known or given beforehand.
	There is an existing track for every target or track initial
	A target can produce, at most, one measurement for a given s
	A measurement could have come from, at most, one target, and
	False alarms/targets and clutter are independent and uniform
	The conditional density of each target, given the past measu
	Each target is widely separated spatially, such that correla
	The elements of each (multi-dimensional) measurement are ind
	The PDAF algorithm is a sub-optimal Bayesian approach for as
	In the case of a multiple-target scenario, the algorithm nee
	The false alarm distribution needed for the MTT algorithm is
	where m is the expected number of measurements in the gate. 
	where V is the volume of the validation region given in .
	The probabilities of the algorithm can then be found by acco
	where  is the probability that the ith measurement is the co
	After computating the probabilities, the filter oparates as 
	Combined innovation
	Filter gain
	where  is the predicted covariance which is the same covaria
	State update
	Covariance update
	where is the track update covariance for a single-target cas
	MTT Algorithm Used

	For simplicity, the following assumptions are considered:
	There are only two targets at any particular time interval.
	Target discrimination and track initializing are done before
	For tracking, there are enough RF sensors in the area.
	The RF sensors can update the measurement every  s.
	The RF sensors observe the target’s range, azimuth angle , a
	The SNR = 26.7 dB for a worst case. If the targets’ RCS is r
	The probability of miss, .
	When the measurement originates from the real targets, the p
	There are, at most, five false alarm/clutter hits that can b
	False target/clutter is intentionally created from the sourc
	The simulation uses the “scope.m”  (see Appendix B) function
	Table IV�4 The measurement output format of the “scope.m” f
	Range
	Azimuth angle
	Elevation angle
	RF position x-axis
	RF position y-axis
	RF position z-axis
	The observation output format of the jamming case is given i
	Table IV�5 The measurement output format for the jamming ca
	0
	Azimuth Angle
	Elevation angle
	RF position x-axis
	RF position y-axis
	RF position z-axis
	The function measures the original target position, at most 
	Correlation, association, and fusion are implemented by the 
	We use spherical coordinate measurements to overcome the com
	where
	,
	is the predicted position of the target in question, and,,ar
	The measurement matrix  is the gradient of the measurement f
	Then, the innovation will be
	.
	All other steps for the correlation and the association will
	The estimated position and the related state covariance are 
	The MTT algorithm uses ellipsoidal gating as correlation. Th
	Figure IV�7 The MTT algorithm position error for a normal-c
	When jamming is taken into account, the position error intro
	Figure IV�8 The MTT algorithm target position error when it
	The reduced RCS effect on the fusion center is shown in Figu
	Figure IV�9 MTT algorithm target position error when both t
	Because the correlation algorithm already takes into account
	The combined-attack effect, described in Chapter-III, is sho
	Figure IV�10 MTT algorithm position error, when the combine
	B. KILL VEHICLE

	In this section, we will discus the kill vehicle that is car
	All of the “KVs” recently reported are designed for mid-cour
	Evolution of Kill Vehicles

	The “Exoatmospheric Kill Vehicle (EKV) is a small flying dev
	Since the first rocket launched in World War II, all militar
	last thirty years, homing-style interceptors have had enough
	September 8, 1944: The Missile Age begins with German V-2 mi
	July 1945- March 1946: Military officers recommend that the 
	1957-1958: The U.S. steps up its missile defense efforts aft
	July 19, 1962: One of the Army's Zeus missile interceptors, 
	November 10, 1966: The U.S. publicly confirms that the Sovie
	March 23-25, 1983: The U.S. President Ronald Reagan, in a na
	June 10, 1984: After several failed attempts, the Army succe
	January 29, 1991: The Pentagon's Exoatmospheric Reentry Vehi
	June 24, 1997: The first “fly by” test of the National Missi
	October 2, 1999: The first hit-to-kill test of Clinton's NMD
	March 15, 2002: Integrated Flight Test (IFT-8) is successful
	For the purpose of the kill vehicle, the HOE and ERIS projec
	The HOE is a
	Vehicle consisted of the first two stages (Thiokol M55E1 + A
	Figure IV�11 shows the defined KV for HOE.
	Figure IV�11 The HOE (From [53]).
	The second important step in U.S. missile defense is the tes
	The ERIS test missiles consisted of the second and third sta
	Figure IV�12 shows the defined KV for ERIS. The KV’s size a
	Figure IV�12 The ERIS (From [56])
	Finally, in 1997 and 1998, after the evaluation of the test 
	adds synergy to a multi-layered defense,
	counters the threat in the midcourse phase of flight,
	target selection made in presence of multiple decoys,
	“hit-to-kill” technology allows complete destruction of weap
	Payload consists of EKV and adapter for booster.
	Figure IV�13 shows the developed KV for the midcourse.
	Figure IV�13 Raytheon EKV (From [57])
	For the KV configuration, the cruciform is mostly chosen to 
	Until now, all KVs have been for the midcourse interception.
	On-Board Sensors

	The sensor on a KV can be compared to the “eye” of a human b
	The selection of sensors depends on the target in question. 
	For the IR seekers, using the on-board SWIR seeker to track 
	The KV’s IR seeker has advantages over space-based IR sensor
	For the purpose of hardbod-plume discrimination and to help 
	The second sensor proposed the KVs is an active light detect
	The range equation of the LIDAR to detect the point mass tar
	where is the transmitted power, D is the optical aperture di
	The point resolution standard deviation is given by [60] as
	where  is a complex function related to the image’s spatial 
	The characteristics of the space laser are listed in Table 
	Table IV�6 Characteristics of the Space Laser (From [23]).
	Laser
	Efficiency
	Mars observer Laser Altimeter (1.06 , 40, 10 pps)
	3%
	Vegetation Canopy Laser (1.06 , 15, 10 – 240 pps)
	6%
	Fibertek proposal for improvement 1.06  laser
	10%
	Nd:YAG slab 1.06 , 808- diode pump, 100 )
	6%
	Yb fiber (1.03-1.10 , 100 )
	6%-8%
	To improve the laser pointing accuracy, a joint observer-bas
	In contrast to LIDAR, microwave radar or the state-of-art lo
	If the problem with complexity, due to the increased numbers
	Table IV�7 FMCW LPI radar parameter for 0.5 m resolution at
	Doppler Frequency (Hz)
	612103
	Max delay (s)
	1010-3
	Coherent processing interval (s)
	4510-3
	Spectral width (Hz)
	222.2103
	Effective transmitted modulation bandwidth (Hz)
	245.45106
	Degraded (effective) Resolution (m)
	0.61
	Maximum beat frequency (Hz)
	55.15106
	Minimum sampling rate of ADC (Samples/s)
	110.3106
	FFT size
	65,536
	Adjusted sampling rate of ADC (Samples/s)
	145.63106
	Unambiguous max Beat frequency (Hz)
	72.8106
	Time bandwidth product (Hz/s)
	110.45103
	Kill Vehicle Requirements for Intercept

	The requirements for a successful interception depend on the
	Interceptor boost: the phase between the launch of the GBI a
	KV divert: the phase between the kill vehicle launch and the
	KV homing: the phase between the acquisition of a target wit
	Endgame: the final stage of interception. “The KV must have 
	In addition to accurate position information and the maneuve
	Figure IV�14 Properties of terrestrial- and space-based kil
	Finally, the successful interception should end with destruc
	The Final Simulation with KVs

	The scenario for which we run our simulation is described in
	The target and interceptor are ICBMs as described in [5]. E
	The parameters for the ICBM are created in a data matrix. Ta
	Table IV�8 The format of the input data matrix.
	Stage-#1
	Stage-#2
	Stage-#3
	Stage-#4
	Stage weight in lbs,
	Stage weight in lbs,
	Stage weight in lbs,
	Stage weight in lbs,
	Stage Fuel in lbs,
	Stage Fuel in lbs,
	Stage Fuel in lbs,
	Stage Fuel in lbs,
	Specific Impulse,
	Specific Impulse,
	Specific Impulse,
	Specific Impulse,
	Stage burn time in s,
	Stage burn time in s,
	Stage burn time in s,
	Stage burn time in s,
	The input data matrix, then, is reintroduced by the function
	Table IV�9 The format of data matrix that the simulation us
	Stage-#1
	Stage-#2
	Stage-#3
	Stage-#4
	Stage weight in kg,
	Stage weight in kg,
	Stage weight in kg,
	Stage weight in kg,
	Stage Fuel in kg,
	Stage Fuel in kg,
	Stage Fuel in kg,
	Stage Fuel in kg,
	Specific Impulse in s,
	Specific Impulse in s,
	Specific Impulse in s,
	Specific Impulse in s,
	Stage burn time in s,
	Stage burn time in s,
	Stage burn time in s,
	Stage burn time in s,
	Fuel burn ratio,
	Fuel burn ratio,
	Fuel burn ratio,
	Fuel burn ratio,
	Canister weight in kg
	Canister weight in kg
	Canister weight in kg
	Canister weight in kg
	Next Stage time in s
	Next stage time in s
	Next stage time in s
	Next stage time in s
	Total weight in kg
	Total weight except first stage in kg
	Total weight except first and second stages in kg
	Weight of final stage in kg
	The stage index moves along the columns of the data matrix (
	The stage change is done by increasing the stage index when 
	The optimum point for the KV launch depends on the distance,
	Both the interceptor and the KV are assumed to use PN, which
	Because the guidance of the interceptor and the kill vehicle
	While tracking errors are given in the MTT section, the guid
	(a)      (b)
	Figure IV�15 The perfect tracking case (a) Guidance and (b)
	(a)      (b)
	Figure IV�16 The no-EA case (a) Guidance and (b) Closing ve
	(a)      (b)
	Figure IV�17 Combined EA case (a) Guidance and (b) Closing 
	A zero-delay-launch is unrealistic since a decision time is 
	(a)             (b)
	Figure IV�18 The normal case (a) Guidance and (b) Closing v
	To obtain an acceptable miss distance, the only parameter we
	Figure IV�19 The no-EA case lateral acceleration for the MT
	Figure IV�20 The no-EA case closing velocity for the MTT al
	Figure IV�21 The no-EA case Lateral Divert for the MTT algo
	The resulting interception velocity plot for the target and 
	Figure IV�22 35 s launch delay Velocities
	The miss distance can be enhanced by approaching the target 
	C. SUMMARY

	In this section, we investigate the basic requirements for t
	For the KV, the evolution is summarized. The type and specif
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	V. CONCLUSION
	A. SUMMARY OF THE WORK

	In this thesis, we investigated the effect of EAs on the RF 
	The EA types that might be used against the RF sensors of th
	Because the EA effect is so intense that we investigated a n
	The MTT and the KV were studied using the simulation. A mult
	B. SIGNIFICANT RESULTS

	We have used a 3D multi-target, multi-sensor simulation to e
	The RF sensor is very vulnerable to any EA that might be use
	The MTT algorithm has the capacity to eliminate EA effects i
	The simulation results show that the closest the KV can get 
	C. SUGGESTIONS FOR FUTURE WORK

	In this work, a multi-target, multi-sensor scenario was inve
	In this thesis, the KV was investigated only for the endgame
	APPENDIX A. CODE FLOWCHART
	This appendix includes the flowchart of the main simulation 
	Figure A�1 Flowchart-- data start-up (1 of 8)
	Figure A�2 Flowchart-- data start-up cont’  (2 of 8)
	Figure A�3 Flowchart-- first target motion (3 of 8)
	Figure A�4 Flowchart-- second target motion (4 of 8)
	Figure A�5 Flowchart-- measurement and MTT (5 of 8)
	Figure A�6 Flowchart-- first interceptor motion (6 of 8)
	Figure A�7 Flowchart-- second interceptor motion (7 of 8)
	Figure A�8 Flowchart-- finalize the simulation (8 of 8)
	APPENDIX B. MATLAB® CODE
	This appendix includes a full copy of the simulation and the
	A. MULTITARGET3D ( )- (MAIN SIMULATION)

	% MultiTarget3D Simulation for
	% Multi-Target Multi-Sensor Multi-stage Boosting Boost-phase
	% APR 2005, Monterey, CA
	% K.Yildiz, Prof. P.E. Pace, Prof. M.Tummala
	clear;clc;
	tic;            % Calculate Run time
	global RCS1X RCS1X_R txDelay  maxG navCoefM SSM1 SSM2 stateM
	Vcfirst updateTime;
	%-----------------------------------------------------------
	%% Constants
	Re = 6.37e6;             % Radius of the Earth (m)
	G = 6.67e-11;            % Gravitational Constant (m^3/s^2.k
	Me = 5.98e24;            % Earth's Mass (kg)
	SOL = 299792458;         % Speed of light (m/s)
	posEC = [0; 0; 0];       % Position of Earth's Center
	SMALL = -1e-6;           % An arbitrary small number for com
	BIG = 1e6;               % An arbitrary big number for compa
	Hp = [1 0 0 0 0 0;
	0 1 0 0 0 0;
	0 0 1 0 0 0];      % The position observation matrix
	Hv = [0 0 0 1 0 0;
	0 0 0 0 1 0;
	0 0 0 0 0 1];      % velocity observation matrix
	%% Time variable
	farTimeStep = 0.05;      % Integration Time Step at Intercep
	nearTimeStep = 0.0005;   % Integration Time Step at Terminal
	timeStepSwitch = 5000;   % Distance to Switch Time Step (m)
	t1 = 0;                  % Independent first Interception Ti
	t2 = 0;                  % Independent second Interception T
	t = [t1,t2];             % Simulation Time (s)
	dt1 = 0.05;              % First interception time step (s)
	dt2 = 0.05;              % Second interception time step (s)
	dt = [dt1,dt2];          % Simulation Time Step (s)
	updateTime_1 =...
	farTimeStep*1;       % Sensor Update Interval (s)
	updateTime_2 =...
	farTimeStep*1;       % Sensor Update Interval (s)
	updateTime = [updateTime_1, updateTime_2];
	txDelay1 = 10e-3;        % First interception Transmission d
	txDelay2 = 10e-3;        % Second interception Transmission 
	txDelay = [txDelay1, txDelay1];
	txCounter_1 = 0;         % First interception data Update co
	txCounter_2 = 0;         % Second interception data Update c
	txCounter = [txCounter_1, txCounter_2];
	%% Flags
	kill_launch = [1 1];     % Launching Kill vehicle
	initializing = [1 1];    % JPDA Filter Initialization flags
	isDecoys = [0 0];        % Decoys launch flag
	isReduced = 0;           % Reduced RCS indication flag
	isJamming = 0;           % Jamming indication flag
	timeStepFlag = [1 1];    % Flag used to switch between time 
	launch_flag = [1 1];     % For indicating the Interceptor la
	Vcfirst = [1 1];         % Flag for setting the First Vc to 
	txFlag_1 = 1;            % First interception Data Update fl
	txFlag_2 = 1;            % Second interception Data Update f
	txFlag = [1, 1];
	timeFlags =  [t;
	dt;
	txFlag;
	txCounter;
	txDelay];  % Put All time flag into one
	%% Initialization of Parameters
	% Load Target RCS Data Use the X band radar
	load POstage1_X; RCS1XRaw = Sth;    % Stage-1, X-Band
	load RCS1X_R; RCS1X_RRaw = Sth;     % Stage-1, Reduced
	% Interpolate RCS Data for 0.1 degrees precision
	mAngleDegRaw = 0:360;        % Monostatic Angle Theta at Raw
	mAngleDeg = 0:0.1:360;       % Monostatic Angle Theta after 
	RCS1X = interp1(mAngleDegRaw,...
	RCS1XRaw, mAngleDeg);% Generate 0.1 deg precision RCS Matrix
	RCS1X_R = interp1(mAngleDegRaw,...
	RCS1X_RRaw, mAngleDeg);% Generate 0.1 deg precision RCS Matrix
	%-----------------------------------------------------------
	% Target- #1
	lAzT_1 = deg2rad(50.1);      % Target Launch Angle (Azimuth)
	lElT_1 = deg2rad(84);        % Target Launch Angle (Elevatio
	% Target (Located at Kilju Missile Base, N. Korea)
	% Position the target in Cartesian Coordinates.
	% The Target located at (N41'00” / E129'00”)
	posT_1 = geo2cart('41d00m00sN','129d00m00sE',Re); % Target P
	unitvT_1 = top2cart(lAzT_1, lElT_1,...
	'41d00m00sN', '129d00m00sE'); % Velocity Unit Vector
	pos0T_1 = posT_1;                                 % Target I
	lTimeT_1 = 0;                                     % Target L
	lenT_1 = 21.8;                                    % Target T
	%Define Missile Data Matrices as Follows
	%                           Stage-1     Stage-2     ...     
	%   Total Mass (lb)       [ X           X           ...     
	%   Propellent Mass (lb)    X           X           ...     
	%   Specific Impulse (s)    X           X           ...     
	%   In-stage Burn Time (s)  X           X           ...     
	%Following Rows are Added by the Program (Do not Define!)
	%   dM/dt                 [ X           X           ...     
	%   Canister Mass (kg)      X           X           ...     
	%   Ignition Time           X           X           ...     
	%   Total Mass (kg)         X           X                   
	%Generic 3-Stage Missile Data Matrix
	%               Stage-1     Stage-2     Stage-3     Payload
	dataMatrixT_1 = [ 108000      61000       17000       5000
	91800       51850       14450       0
	300         300         300         0
	60          60          60          1   ];
	%Add dM/dt and Canister Weight Rows to Data Matrix
	dataMatrixT_1 = reformDataMatrix(dataMatrixT_1);
	MT_1 = sum(dataMatrixT_1(1,:)); %Target Initial Total Mass
	%-----------------------------------------------------------
	% Target- #2
	lAzT_2 = deg2rad(50);    % Target Launch Angle (Azimuth) (Ra
	lElT_2 = deg2rad(84);    % Target Launch Angle (Elevation) (
	% Target (Located at Ok'pyong Missile Base, N. Korea)
	% Position the target in Cartesian Coordinates.
	% The Target located at (N39'25” / E127'25”)
	posT_2 = geo2cart('39d25m00sN', '127d25m00sE', Re);% Target 
	pos0T_2 = posT_2;                                 % Target I
	unitvT_2 = top2cart(lAzT_2, lElT_2,...
	'39d25m00sN', '127d25m00sE'); % Velocity Unit Vector
	lTimeT_2 = 0;                                     % Target L
	lenT_2 = 21.8;                                    % Target T
	%Generic 3-Stage Missile Data Matrix
	%               Stage-1     Stage-2     Stage-3     Payload
	dataMatrixT_2 = [ 108000      61000       17000       5000
	91800       51850       14450       0
	300         300         300         0
	60          60          60          1   ];
	%Add dM/dt and Canister Weight Rows to Data Matrix
	dataMatrixT_2 = reformDataMatrix(dataMatrixT_2);
	MT_2 = sum(dataMatrixT_2(1,:)); % Target Initial Total Mass
	% ----------------------------------------------------------
	% Missile interceptor- #1
	lAzM_1 = deg2rad(298);    % Missile Launch Angle (Azimuth) (
	lElM_1 = deg2rad(79);     % Missile Launch Angle (Elevation)
	%Missile (Located at Sea of Japan, 600km East of Target Laun
	% Position the interceptor in Cartesian Coordinates.
	% The missile located at (N41'00” / E136'07”)
	posM_1 = geo2cart('41d00m00sN', '136d07m30sE', Re);% Missile
	pos0M_1 = posM_1;                                % Missile I
	unitvM_1 = top2cart(lAzM_1, lElM_1,...
	'41d00m00sN', '136d07m30sE'); % Velocity Unit Vector
	lTimeM_1 = lTimeT_1 + 35;                        % Missile L
	lenM_1 = 21.8;                                   % Missile T
	%Generic 3-Stage Interceptor Data Matrix use the Generic Mis
	dataMatrixM_1 = [ 108000      61000       17000       500
	102600      57950       16150       200
	300         300         300         300
	54          54          54          4];
	%Add dM/dt and Canister Weight Rows to Data Matrix
	dataMatrixM_1 = reformDataMatrix(dataMatrixM_1);
	MM_1 = sum(dataMatrixM_1(1,:));                % Missile Ini
	% ----------------------------------------------------------
	% Missile interceptor- #2
	lAzM_2 = deg2rad(298);    % Missile Launch Angle (Azimuth) (
	lElM_2 = deg2rad(79);     % Missile Launch Angle (Elevation)
	%Missile (Located at Sea of Japan, 600km East of Target Laun
	% Position the interceptor in Cartesian Coordinates.
	% The missile located at (N39'25” / E134'21”)
	posM_2 = geo2cart('39d26m00sN', '134d21m30sE', Re);% Missile
	pos0M_2 = posM_2;                                % Missile I
	unitvM_2 = top2cart(lAzM_2, lElM_2,...
	'39d26m00sN', '134d21m30sE');% Velocity Unit Vector
	lTimeM_2 = lTimeT_2 + 35;                        % Missile L
	lenM_2 = 21.8;                                   % Missile T
	%Generic 3-Stage Interceptor Data Matrix use the Generic Mis
	dataMatrixM_2 = [ 108000      61000       17000       500
	102600      57950       16150       0
	300         300         300         300
	54          54          54          4];
	%Add dM/dt and Canister Weight Rows to Data Matrix
	dataMatrixM_2 = reformDataMatrix(dataMatrixM_2);
	MM_2 = sum(dataMatrixM_2(1,:)); %Missile Initial Total Mass
	%-----------------------------------------------------------
	% Navigation parameter for the interceptors
	navCoefM = [4 4];        % Missile Navigation Coefficient fo
	% Navigation (Either 3, 4 or 5)
	maxG = [10 10];          % Max Lateral Acceleration Command 
	%Define Control System Dynamics Transfer Function
	%                       1
	%           -------------------------
	%           as^n+ ... + bs^2 + cs + 1
	TMc = 5;                                       % System Time
	numTFM = 1;                                    % Numerator
	denTFM = [(TMc^3/27) (TMc^2/3) TMc 1];         % Denominator
	sysTFM = tf(numTFM, denTFM);   % Generate Transfer Function 
	sysdTFMFar = c2d(sysTFM,farTimeStep);          % Discretize 
	sysdTFMNear = c2d(sysTFM,nearTimeStep);        % Discretize 
	% Convert Transfer Function to State Space (Far)
	[AMFar,BMFar,CMFar,DMFar] = ssdata(sysdTFMFar);
	% Convert Transfer Function to State Space (Near)
	[AMNear,BMNear,CMNear,DMNear] = ssdata(sysdTFMNear);
	% Put this matrix in one, to use separate it
	SSMfar = [AMFar,BMFar,CMFar',[DMFar;0;0]];
	SSMnear = [AMNear,BMNear,CMNear',[DMNear;0;0]];
	%-----------------------------------------------------------
	%Various Computations
	g0 = (G * Me) / (Re ^ 2);   %Gravitational Acceleration at S
	%-----------------------------------------------------------
	% RF-1 (125 degrees 600 km from Target Launch Site, Sea of J
	% The RF-1 located at (N37'46” / E134'35”)
	posRF1 = geo2cart('40d21m00sN', '134d34m35sE', Re);  % RF-1 
	% RF-2 (135 degrees 600 km from Target Launch Site, Sea of J
	% The RF-2 located at (N37'05” / E133'46”)
	posRF2 = geo2cart('43d34m00sN', '135d46m00sE', Re);  % RF-2 
	%RF-3 ( Sea of Japan)
	% The RF-3 located at (N39'35” / E130'46”)
	posRF3 = geo2cart('39d35m00sN', '130d46m00sE', Re);  % RF-3 
	%-----------------------------------------------------------
	% Decoy for Target- #1
	posD_1 = posT_1;                             % Decoy Positio
	lTimeD_1 = lTimeT_1 + 90;                    % Decoy Release
	unitvD_1 = unitvT_1;                         % Velocity Unit
	% Decoy for Target- #2
	posD_2 = posT_2;                             % Decoy Positio
	lTimeD_2 = lTimeT_2 + 90;                    % Decoy Release
	unitvD_2 = unitvT_2;                         % Velocity Unit
	% ----------------------------------------------------------
	% Jammer on the Target-1 and Target-2
	% Position = Current Position of target
	PtJ = 1e3  ;                                 % Jammer Power 
	deltaFJ = 4e9;                               % Jammer Bandwi
	%-----------------------------------------------------------
	%% Simulation Start the variable
	disp(' ');                              % Display a blank li
	%Target-1
	stageT_1 = 1;                           % Target Stage
	stageChangeTimeT_1 = ...
	dataMatrixT_1(7, stageT_1 + 1);     % Target Next Stage Chan
	ISPT_1 = dataMatrixT_1(3, stageT_1);    % Target Stage Speci
	dMdtT_1 = dataMatrixT_1(5, stageT_1);   % Target Stage dM/dT
	hT_1 = 0;                               % Target Height (m)
	aT_1 = [0; 0; 0];                       % Target Acceleratio
	magTT_1 = dMdtT_1 * g0 * ISPT_1;        % Target Stage Sea L
	magvT_1 = (magTT_1 - MT_1 * g0) /...
	MT_1 * (lenT_1 * MT_1/...
	(magTT_1 - MT_1 * g0)) ^ (1 / 2);   % Target Silo Exit Velocity (m/s)
	vT_1 = magvT_1 .* unitvT_1;             % Target Velocity Ve
	groundTrackT_1 = posT_1;                % Target Ground Trac
	oldGroundTrackT_1 = groundTrackT_1;     % Target Old Ground 
	distT_1 = 0;                            % Target Ground Dist
	mnvrT_1 = 0;                            % Target Maneuver (g
	sensedPosT_1 = posT_1;                  % Target Sensed Posi
	poserror_1 = 0;                         % Initial position e
	xT_1 = [posT_1;vT_1];                   % State vector of IC
	%Target-2
	stageT_2 = 1;                           % Target Stage
	stageChangeTimeT_2 =...
	dataMatrixT_2(7, stageT_2 + 1);     % Target Next Stage Chan
	ISPT_2 = dataMatrixT_2(3, stageT_2);    % Target Stage Speci
	dMdtT_2 = dataMatrixT_2(5, stageT_2);   % Target Stage dM/dT
	hT_2 = 0;                               % Target Height (m)
	aT_2 = [0; 0; 0];                       % Target Acceleratio
	magTT_2 = dMdtT_2 * g0 * ISPT_2;        % Target Stage Sea L
	magvT_2 = (magTT_2 - MT_2 * g0) /...
	MT_2 * (lenT_2 * MT_2/...
	(magTT_2 - MT_2 * g0)) ^ (1 / 2);   % Target Silo Exit Velocity (m/s)
	vT_2 = magvT_2 .* unitvT_2;             % Target Velocity Ve
	groundTrackT_2 = posT_2;                % Target Ground Trac
	oldGroundTrackT_2 = groundTrackT_2;     % Target Old Ground 
	distT_2 = 0;                            % Target Ground Dist
	mnvrT_2 = 0;                            % Target Maneuver (g
	sensedPosT_2 = posT_2;                  % Target Sensed Posi
	poserror_2 = 0;                         % Initial position e
	xT_2 = [posT_2;vT_2];                   % State-Space matrix
	%-----------------------------------------------------------
	%Missile interceptor- #1
	stageM_1 = 1;                           % Missile Stage
	stageChangeTimeM_1 =...
	dataMatrixM_1(7, stageM_1 + 1);     % Missile Next Stage Cha
	ISPM_1 = dataMatrixM_1(3, stageM_1);    % Missile Stage Spec
	dMdtM_1 = dataMatrixM_1(5, stageM_1);   % Missile Stage dM/d
	hM_1 = 0;                               % Missile Height (m)
	aM_1 = [0; 0; 0];                       % Missile Accelerati
	gM_1 = g0;                              % Missile gravitatio
	magTM_1 = dMdtM_1 * g0 * ISPM_1;        % Missile Stage Sea 
	magvM_1 = (magTM_1 - MM_1 * g0) /...
	MM_1 * (lenM_1 * MM_1/...
	(magTM_1 - MM_1 * g0)) ^ (1 / 2);   % Missile Silo Exit Velocity (m/s)
	vM_1 = magvM_1 .* unitvM_1;             % Missile Velocity V
	groundTrackM_1 = posM_1;                % Missile Ground Tra
	oldGroundTrackM_1 = groundTrackM_1;     % Missile initial gr
	distM_1 = 0;                            % Missile Ground Dis
	GFM_1 = [0;0;0];                        % Missile Guidance F
	comLatAccM_1 = 0;                       % Commanded Lateral 
	achLatAccM_1 = 0;                       % Achieved Lateral A
	latDivM_1 = 0;                          % Missile Lateral Di
	nlM_1 = [0; 0; 0];                      % Achieved Lateral A
	SSM1  = SSMfar;                         % State Space matrix
	stateM1 = [0 0 0;                       % Initial StateMx
	0 0 0;                       % Initial StateMy
	0 0 0];                      % Initial StateMz
	magGFM_1 = 0;                           % Magnitude of Guida
	magncM_1 = 0;                           % Magnitude of the l
	xM_1 = [posM_1;vM_1];                    % State-Space matri
	%Missile interceptor-2
	stageM_2 = 1;                           % Missile Stage
	stageChangeTimeM_2 =...
	dataMatrixM_2(7, stageM_2 + 1);     % Missile Next Stage Cha
	ISPM_2 = dataMatrixM_2(3, stageM_2);    % Missile Stage Spec
	dMdtM_2 = dataMatrixM_2(5, stageM_2);   % Missile Stage dM/d
	hM_2 = 0;                               % Missile Height (m)
	aM_2 = [0; 0; 0];                       % Missile Accelerati
	gM_2 = g0;                              % Gravitational Acce
	magTM_2 = dMdtM_2 * g0 * ISPM_2;        % Missile Stage Sea 
	magvM_2 = (magTM_2 - MM_2 * g0) /...
	MM_2 * (lenM_2 * MM_2/...
	(magTM_2 - MM_2 * g0)) ^ (1 / 2);   % Missile Silo Exit Velocity (m/s)
	vM_2 = magvM_2 .* unitvM_2;             % Missile Velocity V
	groundTrackM_2 = posM_2;                % Missile Ground Tra
	oldGroundTrackM_2 = groundTrackM_2;     % Missile initial gr
	distM_2 = 0;                            % Missile Ground Dis
	GFM_2 = [0;0;0];                        % Missile Guidance F
	comLatAccM_2 = 0;                       % Commanded Lateral 
	achLatAccM_2 = 0;                       % Achieved Lateral A
	latDivM_2 = 0;                          % Missile Lateral Di
	nlM_2 = [0; 0; 0];                      % Achieved Lateral A
	SSM2  = SSMfar;                         % State Space matrix
	stateM2 = [0 0 0;                       % Initial StateMx
	0 0 0;                       % Initial StateMy
	0 0 0];                      % Initial StateMz
	magGFM_2 = 0;                           % Magnitude of Guida
	magncM_2 = 0;                           % Magnitude of the l
	xM_2 = [posM_2;vM_2];                   % State-Space matrix
	%-----------------------------------------------------------
	%Decoy for target- #1
	hD_1 = 0;                               % Decoy Height (m)
	magvD_1 = magvT_1;                      % Decoy Initial Velo
	vD_1 = magvD_1 .* unitvD_1;             % Decoy Velocity Vec
	groundTrackD_1 = posD_1;                % Decoy Ground Track
	distD_1 = 0;                            % Decoy Ground Dista
	oldGroundTrackD_1 = posT_1;             % Decoy previous gro
	xD1 = [posD_1; vD_1];                   % State-space Matrix
	%Target-Decoy
	distTD_1 = 0;                           % Target-Decoy Dista
	%Decoy for target-2
	hD_2 = 0;                               % Decoy Height (m)
	magvD_2 = magvT_2;                      % Decoy Initial Velo
	vD_2 = magvD_2 .* unitvD_2;             % Decoy Velocity Vec
	groundTrackD_2 = posD_2;                % Decoy Ground Track
	distD_2 = 0;                            % Decoy Ground Dista
	oldGroundTrackD_2 = posT_2;             % Decoy previous gro
	xD2 = [posD_2; vD_2];                   % State-space Matrix
	%Target-Decoy
	distTD_2 = 0;                           % Target-Decoy Dista
	%-----------------------------------------------------------
	%Missile-#1--->Target-#1
	VcMT_1 = 0;               % Missile-to-Target Sensed Closing
	VcMTTrue_1 = 0;           % Missile-to-Target True Closing V
	distMT_1 = magnitude(posT_1 - posM_1);% Missile-to-Target Di
	oldDistMTTrue_1 = 0;      % Previous True Missile-to-Target 
	oldLOSMT_1 = posT_1 - posM_1;% Previous Line of Sight (LOS)
	oldDistMT_1 = magnitude(oldLOSMT_1);% Previous Target-Missil
	%Missile-#2--->Target-#2
	VcMT_2 = 0;               % Missile-to-Target Sensed Closing
	VcMTTrue_2 = 0;           % Missile-to-Target True Closing V
	distMT_2 = magnitude(posT_2 - posM_2);% Missile-to-Target Di
	oldDistMTTrue_2 = 0;      % Previous True Missile-to-Target 
	oldLOSMT_2 = posT_2 - posM_2;% Previous Line of Sight (LOS)
	oldDistMT_2 = magnitude(oldLOSMT_2);% Previous Target-Missil
	%-----------------------------------------------------------
	%% Data Recording Arrays
	tArray_1   = [];               % Simulation Time for plot In
	tArray_2   = [];               % Simulation Time for plot In
	%-----------------------------------------------------------
	%Target-#1
	posArrayT_1 = [];              % Target Position
	sensedPosArrayT_1 = [];        % Sensed Target Position
	trackingError_1 = [];          % Tracking position error
	groundTrackArrayT_1 = [];      % Target Ground Track
	distArrayT_1 = [];             % Target Ground Distance Arra
	hArrayT_1  = [];               % Target Height (m)
	vArrayT_1  = [];               % Target Velocity (m/s)
	stageArrayT_1 = [];            % Target Stage
	massArrayT_1 = [];             % Target Total Mass
	mnvrArrayT_1 = [];             % Target Maneuver
	%Target-#2
	posArrayT_2 = [];              % Target Position
	sensedPosArrayT_2 = [];        % Sensed Target Position
	trackingError_2 = [];          % Tracking position error
	groundTrackArrayT_2 = [];      % Target Ground Track
	distArrayT_2 = [];             % Target Ground Distance Arra
	hArrayT_2  = [];               % Target Height (m)
	vArrayT_2  = [];               % Target Velocity (m/s)
	stageArrayT_2 = [];            % Target Stage
	massArrayT_2 = [];             % Target Total Mass
	mnvrArrayT_2 = [];             % Target Maneuver
	%-----------------------------------------------------------
	%Missile-#1
	posArrayM_1 = [];              % Missile Position
	groundTrackArrayM_1 = [];      % Missile Ground Track
	distArrayM_1 = [];             % Missile Ground Distance Arr
	hArrayM_1  = [];               % Missile Height (m)
	vArrayM_1  = [];               % Missile Velocity (m/s)
	stageArrayM_1 = [];            % Missile Stage
	massArrayM_1 = [];             % Missile Total Mass
	comLatAccArrayM_1 = [];        % Commanded Missile Lateral A
	achLatAccArrayM_1 = [];        % Achieved Missile Lateral Ac
	latDivArrayM_1 = [];           % Missile Lateral Divert (m/s
	%Missile-2
	posArrayM_2 = [];              % Missile Position
	groundTrackArrayM_2 = [];      % Missile Ground Track
	distArrayM_2 = [];             % Missile Ground Distance Arr
	hArrayM_2  = [];               % Missile Height (m)
	vArrayM_2  = [];               % Missile Velocity (m/s)
	stageArrayM_2 = [];            % Missile Stage
	massArrayM_2 = [];             % Missile Total Mass
	comLatAccArrayM_2 = [];        % Commanded Missile Lateral A
	achLatAccArrayM_2 = [];        % Achieved Missile Lateral Ac
	latDivArrayM_2 = [];           % Missile Lateral Divert (m/s
	%-----------------------------------------------------------
	%Decoy for Target-#1
	posArrayD_1 = [];              % Decoy Position
	groundTrackArrayD_1 = [];      % Decoy Ground Track
	distArrayD_1 = [];             % Decoy Ground Distance Array
	hArrayD_1  = [];               % Decoy Height (m)
	vArrayD_1  = [];               % Decoy Velocity (m/s)
	%Target-Decoy
	distTDArray_1 = [];            % Target---> Decoy distance
	%Decoy for Target-#2
	posArrayD_2 = [];              % Decoy Position
	groundTrackArrayD_2 = [];      % Decoy Ground Track
	distArrayD_2 = [];             % Decoy Ground Distance Array
	hArrayD_2  = [];               % Decoy Height (m)
	vArrayD_2  = [];               % Decoy Velocity (m/s)
	%Target-Decoy
	distTDArray_2 = [];            % Target---> Decoy distance
	%-----------------------------------------------------------
	%Missile-1_Target-1
	distArrayMT_1 = [];            % Missile-Target Distance
	VcArrayMT_1 = [];              % Missile-Target Closing Velo
	%Missile-2_-Target-
	distArrayMT_2 = [];            % Missile-Target Distance
	VcArrayMT_2 = [];              % Missile-Target Closing Velo
	% Measurement and PDAF filter
	targets = [];                  % Measurement empty tray
	decoys = [];                   % Empty measurement tray
	states = [];                   % Empty filter array
	Ps = [];                       % Empty filter array
	Fs = [];                       % Empty filter array
	%% Simulation start here
	while ((hT_1 >= SMALL) || (hM_1 >= SMALL)) && ((VcMT_1 >= 0)
	((hT_2 >= SMALL) || (hM_2 >= SMALL)) && ((VcMT_2 >= 0))% Mai
	%% Target #1 motion
	if (t(1) >= lTimeT_1) &&((hT_1 >= SMALL) ||...
	(hM_1 >= SMALL)) && ((VcMT_1 >= 0)) % First intercepting
	% Initialize the Filter. By Assumption track is initializing
	% help of IR sensor
	if initializing(1)
	covi = [10;10;10;1;1;1];    % Initialization error
	x1ii = xT_1 + randn(size(covi)).*covi; % Initialize with SWA
	states = [states, x1ii];
	Ps = [Ps, 10*diag(covi.^2)];% Initial state covariance
	initializing(1) = 0;        % Do not enter again
	end
	% Check for time step to change state space matrices
	if (distMT_1 <= timeStepSwitch) && timeStepFlag(1) && (t(1) 
	dt(1) = nearTimeStep;  % Change Time steps for precision
	timeStepFlag(1) = 0;   % Reset Flag not to Enter Here Again
	end %if (distMT_1 <= timeStepSwitch) & timeStepFlag(1) & (t 
	% When Target Launched (Target Computations)
	if (t(1) >= lTimeT_1) &&  (hT_1 >= SMALL)
	%Handle Target Stage Change Computations. Get new value
	if t(1) >= (stageChangeTimeT_1 + lTimeT_1)
	% Display Data on stage change
	disp(['Target #1 Stage-', num2str(stageT_1),...
	' Burnout: Speed = ', num2str(magnitude(vT_1)/1000),...
	' km/s, Altitude= ',  num2str(hT_1 / 1000), ' km.']);
	disp(['Target #1 and Interceptor #1 distance= ',...
	num2str(distMT_1/1000), ' km.']);
	disp(' ');
	stageT_1 = stageT_1 + 1;            % Increase Stage
	if stageT_1 >= size(dataMatrixT_1,2)% If No Next Stage
	stageChangeTimeT_1 = BIG;
	else
	% Set Next Stage Change Time
	stageChangeTimeT_1 = ...
	dataMatrixT_1(7, stageT_1 + 1);
	end
	end
	poserror_1 = magnitude(Hp*(xT_1-states(:,1)));   % Position 
	% Move the Target #1
	[F1, xT_1, hT_1, MT_1, posT_1, vT_1, aT_1, gT_1,...
	groundTrackT_1, oldGroundTrackT_1, distT_1, dataMatrixT_1] =
	moveICBM(dt(1), xT_1, dataMatrixT_1, stageT_1,...
	oldGroundTrackT_1, distT_1);
	end %(t >= lTimeT_1) &  (hT_1 >= SMALL) (When Target Launche
	% Move Decoy
	if t(1) >= lTimeD_1
	[xD1, hD_1, posD_1, vD_1, groundTrackD_1, oldGroundTrackD_1,
	distD_1, distTD_1] =...
	moveDecoys(dt(1), xD1, posT_1, distD_1, oldGroundTrackD_1);
	isDecoys(1) = 1;
	else    % If decoy does not released, then the same as ICBM
	xD1 = xT_1;                          % Decoys State
	posD_1 = Hp*xT_1;                    % Decoys position
	vD_1 = Hv*xT_1;                      % Decoys velocity
	hD_1 = hT_1;                         % decoys altitude
	groundTrackD_1 = groundTrackT_1;     % Decoys Ground track
	oldGroundTrackD_1 = groundTrackT_1;  % Decoys Old Ground Tra
	distD_1 = distT_1;                   % Decoys range
	distTD_1 = 0;                        % Decoy --> UCBM Distan
	end
	% Record Data
	tArray_1 = [tArray_1 t(1)];             % Simulation time
	% Target
	posArrayT_1 = [posArrayT_1 posT_1];     % Target position
	sensedPosArrayT_1 = ...
	[sensedPosArrayT_1 sensedPosT_1];   % Sensed target position
	trackingError_1 =...
	[trackingError_1 poserror_1];       % Position error
	hArrayT_1 = [hArrayT_1 hT_1];           % Target height
	groundTrackArrayT_1 =...
	[groundTrackArrayT_1 groundTrackT_1];% Target ground track
	distArrayT_1 = [distArrayT_1 distT_1];   % Target downrange
	vArrayT_1 = [vArrayT_1 magnitude(vT_1)]; % Target velocity
	stageArrayT_1 = [stageArrayT_1 stageT_1];% Target stage
	massArrayT_1 = [massArrayT_1 MT_1];      % Target mass
	mnvrArrayT_1 = [mnvrArrayT_1 mnvrT_1];   % Target maneuver
	%Missile
	posArrayM_1 = [posArrayM_1 posM_1];      % Missile position
	hArrayM_1 = [hArrayM_1 hM_1];            % Missile height
	groundTrackArrayM_1 =...
	[groundTrackArrayM_1 groundTrackM_1];% Missile ground track
	distArrayM_1 = [distArrayM_1 distM_1];   % Missile downrange
	vArrayM_1 = [vArrayM_1 magnitude(vM_1)]; % Missile velocity
	stageArrayM_1 = [stageArrayM_1 stageM_1];% Missile stage
	massArrayM_1 = [massArrayM_1 MM_1];      % Missile Mass
	comLatAccArrayM_1 =...
	[comLatAccArrayM_1 comLatAccM_1];    % Commanded lat. acc.
	achLatAccArrayM_1 =...
	[achLatAccArrayM_1 achLatAccM_1];    % Achieved lat. acc.
	latDivArrayM_1 = [latDivArrayM_1 latDivM_1];% .Lateral diver
	%Decoy
	posArrayD_1 = [posArrayD_1 posD_1];      % Decoy position
	hArrayD_1 = [hArrayD_1 hD_1];            % Decoy height
	groundTrackArrayD_1 =...
	[groundTrackArrayD_1 groundTrackD_1];% Decoy ground track
	distArrayD_1 = [distArrayD_1 distD_1];   % Decoy downrange
	vArrayD_1 = [vArrayD_1 magnitude(vD_1)]; % Decoy velocity
	%Target-Decoy
	distTDArray_1 = [distTDArray_1 distTD_1];% Target-Decoy dist
	%Missile-Target
	distArrayMT_1 = [distArrayMT_1 distMT_1];% Missile-target di
	VcArrayMT_1 = [VcArrayMT_1 VcMT_1];      % Closing velocity
	end
	%% Target #2 motion
	if (t(2) >= lTimeT_2) && ((hT_2 >= SMALL) ||...
	(hM_2 >= SMALL)) && ((VcMT_2 >= 0))  % First intercepting
	% Initialize the Filter. By Assumption track is initializing
	% help of IR sensor
	if initializing(2)
	covi = [10;10;10;1;1;1];         % Initialization error
	x2ii = xT_2 + randn(size(covi)).*covi; % Star with SWAG
	states = [states, x2ii];
	Ps = [Ps, 10*diag(covi.^2)] ;    % Initialize with big inacc
	initializing(2) = 0;             % Do not initialize again
	end
	% Check for time step to change state space matrices
	if (distMT_2 <= timeStepSwitch) && timeStepFlag(2) && (t(2) 
	dt(2) = nearTimeStep;  % Change Time steps for precision
	timeStepFlag(2) = 0;   % Reset Flag not to Enter Here Again
	end %if (distMT_2 <= timeStepSwitch) & timeStepFlag(2) & (t 
	% When Target Launched (Target Computations)
	if (t(2) >= lTimeT_2) &&  (hT_2 >= SMALL)
	%Handle Target Stage Change Computations. Get new value
	if t(2) >= (stageChangeTimeT_2 + lTimeT_2)
	% Display Data on stage change
	disp(['Target #2 Stage-', num2str(stageT_2),...
	' Burnout: Speed = ', num2str(magnitude(vT_2)/1000),...
	' km/s, Altitude= ',  num2str(hT_2 / 1000) ' km.']);
	disp(['Target #2 and Interceptor #2 distance = '...
	num2str(distMT_2/1000), ' km.']);
	disp(' ');
	stageT_2 = stageT_2 + 1;                   % Increase Stage
	if stageT_2 >= size(dataMatrixT_2,2)       % If No Next Stag
	stageChangeTimeT_2 = BIG;
	else
	stageChangeTimeT_2 = ...
	dataMatrixT_2(7, stageT_2 + 1); % Set Next
	end
	end
	poserror_2 = magnitude(Hp*(xT_2-states(:,2)));   % Position 
	% Move the ICBM
	[F2, xT_2, hT_2, MT_2, posT_2, vT_2, aT_2, gT_2,...
	groundTrackT_2, oldGroundTrackT_2, distT_2, dataMatrixT_2] =
	moveICBM(dt(2), xT_2, dataMatrixT_2, stageT_2, ...
	oldGroundTrackT_2, distT_2);
	end %(t >= lTimeT_1) &  (hT_1 >= SMALL) (When Target Launche
	if t(2) >= lTimeD_2
	[xD2, hD_2, posD_2, vD_2, groundTrackD_2, oldGroundTrackD_2,
	distD_2, distTD_2] =...
	moveDecoys(dt(2), xD2, posT_2, distD_2, oldGroundTrackD_2);
	isDecoys(2) = 1;
	else    % If decoy does not released, then everything equals
	xD2 = xT_2;                          % Decoys State
	posD_2 = Hp*xT_2;                    % Decoys position
	vD_2 = Hv*xT_2;                      % Decoys velocity
	hD_2 = hT_2;                         % decoys altitude
	groundTrackD_2 = groundTrackT_2;     % Decoys Ground track
	oldGroundTrackD_2 = groundTrackT_2;  % Decoys Old Ground Tra
	distD_2 = distT_2;                   % Decoys range
	distTD_2 = 0;                        % Decoy --> ICBM Distan
	end
	%Record Data
	tArray_2 = [tArray_2 t(2)];             % Simulation time
	%Target
	posArrayT_2 = [posArrayT_2 posT_2];     % Target position
	sensedPosArrayT_2 =...
	[sensedPosArrayT_2 sensedPosT_2];   % Sensed target position
	trackingError_2 =...
	[trackingError_2 poserror_2];       % Position error
	hArrayT_2 = [hArrayT_2 hT_2];           % Target height
	groundTrackArrayT_2 =...
	[groundTrackArrayT_2 groundTrackT_2];% Target ground track
	distArrayT_2 = [distArrayT_2 distT_2];   % Target downrange
	vArrayT_2 = [vArrayT_2 magnitude(vT_2)]; % Target velocity
	stageArrayT_2 = [stageArrayT_2 stageT_2];% Target stage
	massArrayT_2 = [massArrayT_2 MT_2];      % Target mass
	mnvrArrayT_2 = [mnvrArrayT_2 mnvrT_2];   % Target maneuver
	%Missile
	posArrayM_2 = [posArrayM_2 posM_2];      % Missile position
	hArrayM_2 = [hArrayM_2 hM_2];            % Missile height
	groundTrackArrayM_2 =...
	[groundTrackArrayM_2 groundTrackM_2];% Missile ground track
	distArrayM_2 = [distArrayM_2 distM_2];   % Missile downrange
	vArrayM_2 = [vArrayM_2 magnitude(vM_2)]; % Missile velocity
	stageArrayM_2 = [stageArrayM_2 stageM_2];% Missile stage
	massArrayM_2 = [massArrayM_2 MM_2];      % Missile Mass
	comLatAccArrayM_2 =...
	[comLatAccArrayM_2 comLatAccM_2];    % Commanded lat. acc.
	achLatAccArrayM_2 =...
	[achLatAccArrayM_2 achLatAccM_2];    % Achieved lat. acc.
	latDivArrayM_2 = [latDivArrayM_2 latDivM_2];% Lateral divert
	%Decoy
	posArrayD_2 = [posArrayD_2 posD_2];      % Decoy position
	hArrayD_2 = [hArrayD_2 hD_2];            % Decoy height
	groundTrackArrayD_2 =...
	[groundTrackArrayD_2 groundTrackD_2];% Decoy ground track
	distArrayD_2 = [distArrayD_2 distD_2];   % Decoy downrange
	vArrayD_2 = [vArrayD_2 magnitude(vD_2)]; % Decoy velocity
	%Target-Decoy
	distTDArray_2 = [distTDArray_2 distTD_2];% Target-Decoy dist
	%Missile-Target
	distArrayMT_2 = [distArrayMT_2 distMT_2];% Missile-target di
	VcArrayMT_2 = [VcArrayMT_2 VcMT_2];      % Closing velocity
	end
	%% Measurement and Fusion
	if ~initializing(1)
	targets = [targets, xT_1];
	decoys = [decoys, xD1];
	end
	if ~initializing(2)
	targets = [targets, xT_2];
	decoys = [decoys, xD2];
	end
	% Only take measurement if any track initialized
	if ~initializing(1) || ~initializing(2)
	%RF sensor look angle and distance to target and sensed posi
	% calculation
	[measurements1, covariance1] = Scope(isDecoys, isReduced,...
	isJamming, targets, decoys, posRF1);
	[measurements2, covariance2] = Scope(isDecoys, isReduced,...
	isJamming, targets, decoys, posRF2);
	[measurements3, covariance3] = Scope(isDecoys, isReduced,...
	isJamming, targets, decoys, posRF3);
	targets = [];                      % Empty it again for next
	decoys = [];                       % Empty it for the next s
	end
	%% Prepare data for the fusion box
	if ~initializing(1)
	Fs = [Fs, F1];
	end
	if ~initializing(2)
	Fs = [Fs, F2];
	end
	% Only take measurement if any track initialized
	if ~initializing(1) || ~initializing(2)
	measurements = [measurements1;
	measurements2;
	measurements3];     % Create the measurements stack
	covariances = [covariance1;
	covariance2;
	covariance3];        % Covariance stack
	% Correlate, Associate, Filter and Fuse the measurements
	[states, Ps] = Mash(isJamming, states, Ps, Fs,...
	measurements, covariances);
	Fs = [];                          % Set empty so that load n
	end
	%% Interceptor #1 Motion
	if (t(1) >= lTimeM_1) && ((hT_1 >= SMALL) ||...
	(hM_1 >= SMALL)) &&  (VcMT_1 >= 0)%When Missile #1 Launched
	if launch_flag(1)
	% Indicate Interceptor Launched
	disp('Interception #1');
	disp('First Interceptor launched!');
	disp(' ')
	launch_flag(1) = 0;
	end
	%Handle Target Stage Change Computations
	if t(1) >= (stageChangeTimeM_1 + lTimeM_1)
	% Display Data on stage change
	disp(['Interceptor #1 Stage-' num2str(stageM_1)...
	' Burnout: Speed = ' num2str(magnitude(vM_1)/1000)...
	' km/s, Altitude= '  num2str(hM_1 / 1000) ' km.']);
	disp(['Target #1 and Interceptor #1  distance= ',...
	num2str(distMT_1/1000), ' km.']);
	disp(' ');
	stageM_1 = stageM_1 + 1;                   % Increase Stage
	if stageM_1 >= size(dataMatrixM_1,2)       % If No Next Stag
	stageChangeTimeM_1 = BIG;
	else
	stageChangeTimeM_1 = ...
	dataMatrixM_1(7, stageM_1 + 1);    % Set Next
	end
	end
	% Launch Kill vehicle
	if (distMT_1 <= timeStepSwitch)  && (kill_launch(1))
	stageM_1 = size(dataMatrixM_1, 2);  % This the final stage
	dt(1) = nearTimeStep;
	disp(' ')
	% Display Data on stage change
	disp(['KILL VEHICLE IS LAUNCHED FOR INTERCEPTION #1 TIME ',...
	num2str(t(1)), ' seconds']);
	disp(['Kill Vehicle #1 Stage-' num2str(stageM_1)...
	' Burnout: Speed = ' num2str(magnitude(vM_1)/1000)...
	' km/s, Altitude= '  num2str(hM_1 / 1000) ' km.']);
	disp(['Target and Kill Vehicle Distance = ',...
	num2str(distMT_1/1000), ' km.']);
	disp(' ');
	stageChangeTimeM_1 = BIG;        % never change the stage ag
	dMdtM_1 = 5;                     % JUST FOR GUIDANCE
	txDelay(1) = 0; % Using onboard sensor  no transfer delay
	maxG(1) = 15;   % The kill vehicle more capable to maneuver
	navCoefM(1) = 5;% The kill vehicle more capable to maneuver
	kill_launch(1) = 0;              % Never enter here again
	updateTime(1) = nearTimeStep*1;  % Sensor Update Interval (s
	SSM1  = SSMnear;                 % Switch the Near time step
	timeFlags  = [t;
	dt;
	txFlag;
	txCounter;
	txDelay];          % Update time flag info
	end
	% Move the Interceptor
	[xM_1, dataMatrixM_1, posM_1, vM_1, unitvM_1, gM_1, aM_1,...
	hM_1, MM_1, distM_1, groundTrackM_1, oldGroundTrackM_1] =...
	moveInterceptor(dt(1), xM_1, dataMatrixM_1, stageM_1,...
	GFM_1, oldGroundTrackM_1, distM_1);
	end %(t >= lTimeM_1) & (hM_1 >= SMALL) (When Missile Launche
	% Exploit proportional Guidance
	if ~initializing(1)
	sensedPosT_1 = Hp*states(:,1);         % First in the stack
	if ~(kill_launch(1))
	% The onboard sensors are more sensitive that the max tolera
	% dev is 0.5 m which can be neglected here. so the sensed po
	% will be target position if the kill vehicle launched
	%               sensedPosT_1 = posT_1 ;
	sensedPosT_1 = posT_1 + randn(3,1)*0.5;
	end
	% Calculate the Guidance force to maneuver interceptor.
	[distMT_1, VcMTTrue_1, oldDistMTTrue_1, VcMT_1, oldDistMT_1,
	oldLOSMT_1, mnvrT_1, nlM_1, GFM_1, magGFM_1, magncM_1, ...
	comLatAccM_1, achLatAccM_1, latDivM_1] =...
	guidance(1, posT_1, posM_1, sensedPosT_1, vT_1, VcMT_1, ...
	lTimeM_1, oldDistMTTrue_1, oldDistMT_1, oldLOSMT_1,aT_1,...
	gT_1, nlM_1, gM_1, MM_1, unitvM_1, latDivM_1, magncM_1);
	end
	%% Interceptor #2 motion
	if (t(2) >= lTimeM_2) && ((hT_2 >= SMALL) ||...
	(hM_2 >= SMALL)) &&  (VcMT_2 >= 0)  %When Missile #2 Launched
	if launch_flag(2)
	% Indicate Interceptor Launched
	disp('Interception #2');
	disp('Second Interception launched!');
	disp(' ')
	launch_flag(2) = 0;
	end
	%Handle Target Stage Change Computations
	if t(2) >= (stageChangeTimeM_2 + lTimeM_2)
	% Display Data on stage change
	disp(['Interceptor #2 Stage-' num2str(stageM_2)...
	' Burnout: Speed = ' num2str(magnitude(vM_2)/1000)...
	' km/s, Altitude= '  num2str(hM_2 / 1000) ' km.']);
	disp(['Target #2 and Interceptor #2 distance = '...
	num2str(distMT_2/1000), ' km.']);
	disp(' ');
	stageM_2 = stageM_2 + 1;                   % Increase Stage
	if stageM_2 >= size(dataMatrixM_2,2)       % If No Next Stag
	stageChangeTimeM_2 = BIG;
	else
	stageChangeTimeM_2 = ...
	dataMatrixM_2(7, stageM_2 + 1);
	end
	end
	% Launch Kill vehicle
	if (distMT_2 <= timeStepSwitch) && (kill_launch(2))
	stageM_2 = size(dataMatrixM_2, 2);  % This the final stage
	dt(2) = nearTimeStep;
	disp(' ')
	% Display Data on stage change
	disp(['KILL VEHICLE IS LAUNCHED FOR INTERCEPTION #2 TIME ',...
	num2str(t(2)), ' seconds']);
	disp(['Kill Vehicle #2 Stage-' num2str(stageM_2)...
	' Burnout: Speed = ' num2str(magnitude(vM_2)/1000)...
	' km/s, Altitude= '  num2str(hM_2 / 1000) ' km.']);
	disp(['Target #2 and Kill Vehicle #2 distance = '...
	num2str(distMT_2/1000), ' km.']);
	disp(' ');
	stageChangeTimeM_2 = BIG;% never change the stage again
	dMdtM_2 =  5;            % JUST FOR GUIDANCE
	txDelay(1) = 0; % Using onboard sensor no transfer delay
	maxG(2) = 15;            % The kill vehicle more capable to 
	navCoefM(2) = 5;         % The kill vehicle more capable to 
	kill_launch(2) = 0;      % Never enter here again
	updateTime(2) = nearTimeStep*1;% Sensor Update Interval (s)
	SSM2  = SSMnear;         % Switch Near time step
	timeFlags  = [t;
	dt;
	txFlag;
	txCounter;
	txDelay];   % Update time flag info
	end
	% Move the Interceptor
	[xM_2, dataMatrixM_2, posM_2, vM_2, unitvM_2, gM_2, aM_2, hM
	MM_2, distM_2, groundTrackM_2, oldGroundTrackM_2] =...
	moveInterceptor(dt(2), xM_2, dataMatrixM_2, stageM_2,...
	GFM_2, oldGroundTrackM_2, distM_2);
	end %(When Missile Launched)
	% Exploit proportional Guidance
	if ~initializing(2)
	sensedPosT_2 = Hp*states(:,2);         % First in the stack
	if ~(kill_launch(2))
	% The onboard sensors are more sensitive that the max tolera
	% dev is 0.5 m which can be neglected here. so the sensed po
	% will be target position if the kill vehicle launched
	%               sensedPosT_2 = posT_2;
	sensedPosT_2 = posT_2 + randn(3,1)*0.5;
	end
	% Calculate the Guidance force to maneuver interceptor.
	[distMT_2, VcMTTrue_2, oldDistMTTrue_2, VcMT_2, oldDistMT_2,
	oldLOSMT_2, mnvrT_2, nlM_2, GFM_2, magGFM_2, magncM_2,...
	comLatAccM_2, achLatAccM_2, latDivM_2] =...
	guidance(2, posT_2, posM_2, sensedPosT_2, vT_2, VcMT_2,...
	lTimeM_2, oldDistMTTrue_2, oldDistMT_2, oldLOSMT_2, aT_2,...
	gT_2, nlM_2, gM_2, MM_2, unitvM_2, latDivM_2, magncM_2);
	end
	%% Increase the time
	t = timeFlags(1,:);                       % Take the times t
	t = t + timeFlags(2,:);                   % Increase Time
	timeFlags(1,:) = t;                       % Set the time Fla
	txCounter = timeFlags(4,:);               % Take the Counter
	txCounter = txCounter + timeFlags(2,:);   % Increase Counter
	timeFlags(4,:) = txCounter;               % Set the time Fla
	if t >= 3600                              % Exit After 1 Hou
	break;
	end
	end % (Main loop)
	%% Erase Data After Miss
	passIndex_1 = find(distArrayMT_1 == min(distArrayMT_1))-1;
	%Target
	tArray_1 = tArray_1(:, 1:passIndex_1);
	posArrayT_1 = posArrayT_1(:, 1:passIndex_1);
	sensedPosArrayT_1 = sensedPosArrayT_1(:, 1:passIndex_1);
	trackingError_1 = trackingError_1(:,1:passIndex_1);
	hArrayT_1 = hArrayT_1(:, 1:passIndex_1);
	groundTrackArrayT_1 = groundTrackArrayT_1(:, 1:passIndex_1);
	distArrayT_1 = distArrayT_1(:, 1:passIndex_1);
	vArrayT_1 = vArrayT_1(:, 1:passIndex_1);
	stageArrayT_1 = stageArrayT_1(:, 1:passIndex_1);
	massArrayT_1 = massArrayT_1(:, 1:passIndex_1);
	mnvrArrayT_1 = mnvrArrayT_1(:, 1:passIndex_1);
	%Missile
	posArrayM_1 = posArrayM_1(:, 1:passIndex_1);
	hArrayM_1 = hArrayM_1(:, 1:passIndex_1);
	groundTrackArrayM_1 = groundTrackArrayM_1(:, 1:passIndex_1);
	distArrayM_1 = distArrayM_1(:, 1:passIndex_1);
	vArrayM_1 = vArrayM_1(:, 1:passIndex_1);
	stageArrayM_1 = stageArrayM_1(:, 1:passIndex_1);
	massArrayM_1 = massArrayM_1(:, 1:passIndex_1);
	comLatAccArrayM_1 = comLatAccArrayM_1(:, 1:passIndex_1);
	achLatAccArrayM_1 = achLatAccArrayM_1(:, 1:passIndex_1);
	latDivArrayM_1 = latDivArrayM_1(:, 1:passIndex_1);
	%Decoy
	posArrayD_1 = posArrayD_1(:, 1:passIndex_1);
	hArrayD_1 = hArrayD_1(:, 1:passIndex_1);
	groundTrackArrayD_1 = groundTrackArrayD_1(:, 1:passIndex_1);
	distArrayD_1 = distArrayD_1(:, 1:passIndex_1);
	vArrayD_1 = vArrayD_1(:, 1:passIndex_1);
	%Target-Decoy
	distTDArray_1 = distTDArray_1(:, 1:passIndex_1);
	%Missile-Target
	distArrayMT_1 = distArrayMT_1(:, 1:passIndex_1);
	VcArrayMT_1 = VcArrayMT_1(:, 1:passIndex_1);
	%-----------------------------------------------------------
	%Erase Data After Miss
	passIndex_2 = find(distArrayMT_2 == min(distArrayMT_2))-1;
	%Target
	tArray_2 = tArray_2(:, 1:passIndex_2);
	posArrayT_2 = posArrayT_2(:, 1:passIndex_2);
	sensedPosArrayT_2 = sensedPosArrayT_2(:, 1:passIndex_2);
	trackingError_2 = trackingError_2(:,1:passIndex_2);
	hArrayT_2 = hArrayT_2(:, 1:passIndex_2);
	groundTrackArrayT_2 = groundTrackArrayT_2(:, 1:passIndex_2);
	distArrayT_2 = distArrayT_2(:, 1:passIndex_2);
	vArrayT_2 = vArrayT_2(:, 1:passIndex_2);
	stageArrayT_2 = stageArrayT_2(:, 1:passIndex_2);
	massArrayT_2 = massArrayT_2(:, 1:passIndex_2);
	mnvrArrayT_2 = mnvrArrayT_2(:, 1:passIndex_2);
	%Missile
	posArrayM_2 = posArrayM_2(:, 1:passIndex_2);
	hArrayM_2 = hArrayM_2(:, 1:passIndex_2);
	groundTrackArrayM_2 = groundTrackArrayM_2(:, 1:passIndex_2);
	distArrayM_2 = distArrayM_2(:, 1:passIndex_2);
	vArrayM_2 = vArrayM_2(:, 1:passIndex_2);
	stageArrayM_2 = stageArrayM_2(:, 1:passIndex_2);
	massArrayM_2 = massArrayM_2(:, 1:passIndex_2);
	comLatAccArrayM_2 = comLatAccArrayM_2(:, 1:passIndex_2);
	achLatAccArrayM_2 = achLatAccArrayM_2(:, 1:passIndex_2);
	latDivArrayM_2 = latDivArrayM_2(:, 1:passIndex_2);
	%Decoy
	posArrayD_2 = posArrayD_2(:, 1:passIndex_2);
	hArrayD_2 = hArrayD_2(:, 1:passIndex_2);
	groundTrackArrayD_2 = groundTrackArrayD_2(:, 1:passIndex_2);
	distArrayD_2 = distArrayD_2(:, 1:passIndex_2);
	vArrayD_2 = vArrayD_2(:, 1:passIndex_2);
	%Target-Decoy
	distTDArray_2 = distTDArray_2(:, 1:passIndex_2);
	%Missile-Target
	distArrayMT_2 = distArrayMT_2(:, 1:passIndex_2);
	VcArrayMT_2 = VcArrayMT_2(:, 1:passIndex_2);
	% ----------------------------------------------------------
	%% Plot What you have
	%Define Earth
	[xE, yE, zE] = sphere(36);                  % Generate Unit 
	xE = xE .* Re;                              % Expand X-axis
	yE = yE .* Re;                              % Expand Y-axis
	zE = zE .* Re;                              % Expand Z-axis
	%Visualize Earth & The Coordinate Frame
	figure;
	axis equal;
	axis([-7e6 7e6 -7e6 7e6 -7e6 7e6]);        % Set Axes
	view(280,30);                              % Set Suitable Vi
	grid on;
	hold on;
	surf(xE, yE, zE);                          % Plot Earth
	%3D Target Trajectory and Ground Track
	title('Trajectories & Ground tracks')
	xlabel('x(m)');
	ylabel('y(m)');
	zlabel('z(m)');
	% Plot Target Trajectory
	plot3(posArrayT_1(1,:), posArrayT_1(2,:), posArrayT_1(3,:), 
	%Plot Target_2 Trajectory
	plot3(posArrayT_2(1,:), posArrayT_2(2,:), posArrayT_2(3,:), 
	% Plot Missile Trajectory
	plot3(posArrayM_1(1,:), posArrayM_1(2,:), posArrayM_1(3,:), 
	% Plot Missile Trajectory
	plot3(posArrayM_2(1,:), posArrayM_2(2,:), posArrayM_2(3,:), 
	% Plot Decoy Trajectory
	plot3(posArrayD_1(1,:), posArrayD_1(2,:), posArrayD_1(3,:), 
	% Plot Decoy Trajectory
	plot3(posArrayD_2(1,:), posArrayD_2(2,:), posArrayD_2(3,:), 
	% Plot Target Ground track
	plot3(groundTrackArrayT_1(1,:), groundTrackArrayT_1(2,:),...
	groundTrackArrayT_1(3,:), 'k:');
	% Plot Target Ground track
	plot3(groundTrackArrayT_2(1,:), groundTrackArrayT_2(2,:),...
	groundTrackArrayT_2(3,:), 'k:');
	% Plot Missile Ground track
	plot3(groundTrackArrayM_1(1,:), groundTrackArrayM_1(2,:),...
	groundTrackArrayM_1(3,:), 'k:');
	% Plot Missile Ground track
	plot3(groundTrackArrayM_2(1,:), groundTrackArrayM_2(2,:),...
	groundTrackArrayM_2(3,:), 'k:');
	% Plot Decoy Ground track
	plot3(groundTrackArrayD_1(1,:), groundTrackArrayD_1(2,:),...
	groundTrackArrayD_1(3,:), 'k:');
	% Plot Decoy Ground track
	plot3(groundTrackArrayD_2(1,:), groundTrackArrayD_2(2,:),...
	groundTrackArrayD_2(3,:), 'k:');
	plot3(pos0T_1(1), pos0T_1(2), pos0T_1(3), 'bo')
	plot3(pos0M_1(1), pos0M_1(2), pos0M_1(3), 'go')
	plot3(pos0T_2(1), pos0T_2(2), pos0T_2(3), 'bo')
	plot3(pos0M_2(1), pos0M_2(2), pos0M_2(3), 'go')
	plot3(posRF1(1), posRF1(2), posRF1(3), 'co');
	plot3(posRF2(1), posRF2(2), posRF2(3), 'mo');
	plot3(posRF3(1), posRF3(2), posRF3(3), 'yo');
	% Plot Distance vs. Height
	figure;
	hold on;
	plot((distArrayT_1 ./ 1000), (hArrayT_1 ./ 1000),'r-');
	plot((distArrayM_1 ./ 1000), (hArrayM_1 ./ 1000),'b--');
	plot((distArrayD_1 ./ 1000), (hArrayD_1 ./ 1000),'g-.');
	title('Ground Distance vs. Height for Interception #1');
	xlabel('Ground Distance (km)');
	ylabel('Height (km)');
	legend('Target #1','Interceptor #1', 'Decoy #1', 0);
	% Plot Distance vs. Height
	figure;
	hold on;
	plot((distArrayT_2 ./ 1000), (hArrayT_2 ./ 1000),'r-');
	plot((distArrayM_2 ./ 1000), (hArrayM_2 ./ 1000),'b--');
	plot((distArrayD_2 ./ 1000), (hArrayD_2 ./ 1000),'g-.');
	title('Ground Distance vs. Height for Interception #2');
	xlabel('Ground Distance (km)');
	ylabel('Height (km)');
	legend('Target #2','Interceptor #2', 'Decoy #2', 0);
	% Plot Time vs. Height
	figure
	hold on;
	plot((tArray_1 ./ 60), (hArrayT_1 ./ 1000),'r-');
	plot((tArray_1 ./ 60), (hArrayM_1 ./ 1000),'b--');
	plot((tArray_1 ./ 60), (hArrayD_1 ./ 1000),'g-.');
	title('Time vs. Height for Interception #1');
	xlabel('Flight Time (min)');
	ylabel('Height (km)');
	legend('Target #1','Interceptor #1', 'Decoy #1', 0);
	% Plot Time versus Height
	figure
	hold on;
	plot((tArray_2 ./ 60), (hArrayT_2 ./ 1000),'r-');
	plot((tArray_2 ./ 60), (hArrayM_2 ./ 1000),'b--');
	plot((tArray_2 ./ 60), (hArrayD_2 ./ 1000),'g-.');
	title('Time vs. Height for interception #2');
	xlabel('Flight Time (min)');
	ylabel('Height (km)');
	legend('Target #2','Interceptor #2', 'Decoy #2', 0);
	% Plot Speed vs. Time
	figure;
	hold on;
	plot((tArray_1 ./ 60), (vArrayT_1 ./ 1000),'r-');
	plot((tArray_1 ./ 60), (vArrayM_1 ./ 1000),'b--');
	plot((tArray_1 ./ 60), (vArrayD_1 ./ 1000),'g-.');
	title('Velocity vs. Flight Time for interception #1');
	xlabel('Flight Time (min)');
	ylabel('Velocity (km/s)');
	legend('Target #1','Interceptor #1','Decoy #1', 0);
	% Plot Speed vs. Time
	figure;
	hold on;
	plot((tArray_2 ./ 60), (vArrayT_2 ./ 1000),'r-');
	plot((tArray_2 ./ 60), (vArrayM_2 ./ 1000),'b--');
	plot((tArray_2 ./ 60), (vArrayD_2 ./ 1000),'g-.');
	title('Velocity vs. Flight Time for interception #2');
	xlabel('Flight Time (min)');
	ylabel('Velocity (km/s)');
	legend('Target #2','Interceptor #2','Decoy #2', 0);
	% Plot Stage vs. Time
	figure;
	hold on;
	plot((tArray_1 ./ 60), stageArrayT_1,'r');
	plot((tArray_1 ./ 60), stageArrayM_1,'b');
	title('Stage vs. Flight Time for Interception #1');
	xlabel('Flight Time (min)');
	ylabel('Stage');
	legend('Target #1','Interceptor #1', 0);
	% Plot Stage vs. Time
	figure;
	hold on;
	plot((tArray_2 ./ 60), stageArrayT_2,'r');
	plot((tArray_2 ./ 60), stageArrayM_2,'b');
	title('Stage vs. Flight Time for interception #2');
	xlabel('Flight Time (min)');
	ylabel('Stage');
	legend('Target #2','Interceptor #2', 0);
	% Plot Total Mass vs. Time
	figure;
	hold on;
	plot((tArray_1 ./ 60), massArrayT_1 ./ 1000,'r');
	plot((tArray_1 ./ 60), massArrayM_1 ./ 1000,'b');
	title('Total Mass vs. Flight Time for Interception #1');
	xlabel('Flight Time (min)');
	ylabel('Mass (Tons)');
	legend('Target #1','Interceptor #1', 0);
	% Plot Total Mass vs. Time
	figure;
	hold on;
	plot((tArray_2 ./ 60), massArrayT_2 ./ 1000,'r');
	plot((tArray_2 ./ 60), massArrayM_2 ./ 1000,'b');
	title('Total Mass vs. Flight Time for interception #2');
	xlabel('Flight Time (min)');
	ylabel('Mass (Tons)');
	legend('Target #2','Interceptor #2', 0);
	% Plot Missile-Target Distance
	figure;
	plot((tArray_1 ./ 60), distArrayMT_1 ./ 1000,'b');
	title('Missile-Target Distance for Interception #1');
	xlabel('Time (min)');
	ylabel('Distance (km)');
	% Plot Missile-Target Distance
	figure;
	plot((tArray_2 ./ 60), distArrayMT_2 ./ 1000,'b');
	title('Missile-Target Distance for Interception #2');
	xlabel('Time (min)');
	ylabel('Distance (km)');
	% Plot Missile-Target Closing Velocity
	figure;
	plot((tArray_1 ./ 60), VcArrayMT_1 ./ 1000,'b');
	axis([0 3 0 14]);
	title('Missile-Target Closing Velocity for Interception #1')
	xlabel('Time (min)');
	ylabel('Vc (km/s)');
	% Plot Missile-Target Closing Velocity
	figure;
	plot((tArray_2 ./ 60), VcArrayMT_2 ./ 1000,'b');
	axis([0 3  0 14]);
	title('Missile-Target Closing Velocity for interception #2')
	xlabel('Time (min)');
	ylabel('Vc (km/s)');
	%Plot Missile Lateral Acceleration
	figure;
	hold on
	plot((tArray_1 ./ 60), comLatAccArrayM_1 ,'b');
	plot((tArray_1 ./ 60), achLatAccArrayM_1 ,'r');
	title('Missile Lateral Acceleration for Interception #1');
	xlabel('Time (min)');
	ylabel('Lateral Acceleration (g)');
	axis([0 3 0 15]);
	legend('Commanded', 'Achieved', 0);
	% Plot Missile Lateral Acceleration
	figure;
	hold on
	plot((tArray_2 ./ 60), comLatAccArrayM_2 ,'b');
	plot((tArray_2 ./ 60), achLatAccArrayM_2 ,'r');
	title('Missile Lateral Acceleration for Interception #2');
	xlabel('Time (min)');
	ylabel('Lateral Acceleration (g)');
	axis([0 3 0 15]);
	legend('Commanded', 'Achieved', 0);
	% Plot Missile Lateral Divert
	figure;
	plot((tArray_1 ./ 60), latDivArrayM_1 ,'b');
	title('Missile Lateral Divert for Interception #1');
	xlabel('Time (min)');
	ylabel('Lateral Divert (m/s)');
	% Plot Missile Lateral Divert
	figure;
	plot((tArray_2 ./ 60), latDivArrayM_2 ,'b');
	title('Missile Lateral Divert for Interception #1');
	xlabel('Time (min)');
	ylabel('Lateral Divert for interception 2 (m/s)');
	% Plot Target Maneuver
	figure;
	plot((tArray_1 ./ 60), mnvrArrayT_1 ,'b');
	title('Target #1 Maneuver ');
	xlabel('Time (min)');
	ylabel('Maneuver (g)');
	% Plot Target Maneuver
	figure;
	plot((tArray_2 ./ 60), mnvrArrayT_2 ,'b');
	title('Target #2 Maneuver');
	xlabel('Time (min)');
	ylabel('Maneuver (g)');
	% Position Error
	figure;
	plot((tArray_1 ./ 60), trackingError_1 ,'b-');
	title('Position Error for Target #1');
	xlabel('Time (min)');
	ylabel('Magnitude of Position Error (m)');
	axis([0 3 0 max(trackingError_1)]);
	%Position Error
	figure;
	plot((tArray_2 ./ 60), trackingError_2 ,'b-');
	title('Position Error for Target #2');
	xlabel('Time (min)');
	ylabel('Magnitude of Position Error (m)');
	axis([0 3 0 max(trackingError_2)]);
	% Target-Decoy Distance
	figure;
	plot((tArray_1 ./ 60), (distTDArray_1./1000) ,'b-');
	title('Target #1-Decoy #1 Separation');
	xlabel('Time (min)');
	ylabel('Target-Decoy Distance (km)');
	% Target-Decoy Distance
	figure;
	plot((tArray_2 ./ 60), (distTDArray_2./1000) ,'b-');
	title('Target #2-Decoy #2 Separation');
	xlabel('Time (min)');
	ylabel('Target-Decoy Distance (km)');
	%Display Final Intercept Data
	disp('INTERCEPTION #1');
	disp (['Target Range =' num2str(distT_1 / 1000) ' km.'])
	disp (['Missile Range =' num2str(distM_1 / 1000) ' km.'])
	disp (' ' );
	disp (['Intercept Time =' num2str(max(tArray_1)/60) ' minute
	disp (['Miss Distance =' num2str(min(distArrayMT_1)) ' m.'])
	disp (['Lateral Divert =' num2str(max(latDivArrayM_1)) ' m/s
	disp (' ');
	%Display Final Intercept Data
	disp('INTERCEPTION 2');
	disp (['Target_2 Range =' num2str(distT_2 / 1000) ' km.'])
	disp (['Missile_2 Range =' num2str(distM_2 / 1000) ' km.'])
	disp (' ' );
	disp (['Intercept Time_2 =' num2str((max(tArray_2)-lTimeT_2)
	disp (['Miss Distance =' num2str(min(distArrayMT_2)) ' m.'])
	disp (['Lateral Divert =' num2str(max(latDivArrayM_2)) ' m/s
	disp (' ');
	disp ('Simulation Finished.');
	toc;                    % Calculate Run time
	B. GEO2CART ( )

	function r = geo2cart(strLatitude, strLongitude, R)
	% GEO2CART      This will map the geographic coordinate syst
	%       coordinate sysytem.
	%       This convert the geographical coordinate to the Cart
	%       coordinate given that the position on the earth defi
	%       longitude an the latitude and earth is the sphere wi
	%
	%       Examples of recognized formats are
	%       123°30'00”S, 123-30-00S, 123d30m00sS and 1233000S.
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	lat = deg2rad(npi2pi(str2angle(strLatitude)));
	lon = deg2rad(npi2pi(str2angle(strLongitude)));
	theta = pi/2-lat;
	phi = lon;
	x = R * sin(theta) * cos(phi);
	y = R * sin(theta) * sin(phi);
	z = R * cos(theta);
	r = [x;y;z];
	C. TOP2CART ( )

	function y = top2cart(az, el, strLat, strLon)
	% TOP2CART  This find the initial velocity unit vector in
	%      Cartesian coordinate system of the ballistic missile
	%      given that the geographic position and the azimuth an
	%      elevation angle of the launch.
	%
	%       Examples of recognized formats are
	%       123°30'00”S, 123-30-00S, 123d30m00sS and 1233000S.
	%
	%      This will return the velocity unit vector in the form
	%      of Vu = [Vx;Vy;Vz]
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	lat = deg2rad(npi2pi(str2angle(strLat)));
	lon = deg2rad(npi2pi(str2angle(strLon)));
	%Local transformation (R is assumed to be unity)
	HA = sin(el);
	EA = cos(el)*cos(az);
	NA = cos(el)*sin(az);
	%Global transformation
	T = [-sin(lat)*cos(lon) -sin(lon) cos(lat)*cos(lon)
	-sin(lat)*sin(lon) cos(lon)  cos(lat)*sin(lon)
	cos(lat)          0         sin(lat)]; %Rotation Vector
	y = T * [EA;NA;HA];
	D. REFORMDATAMATRIX ( )

	function y = reformDataMatrix(dataMatrix)
	% REFORMDATAMATRIX    This add three new Rows and convert th
	% to the Kg to the missile data matrix
	%
	%   reformDataMatrix(dataMatrix) is add dM/dt and canister W
	%   total weight to the data matrix. Before adding value it 
	%   two row to Kg
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	numStage = size(dataMatrix, 2);   %Number of Stages
	mcf = 0.4535924;    %Mass Conversion Factor (lb --> kg)
	%Masses lb --> kg
	for r = 1:2
	for c = 1:numStage
	dataMatrix(r, c) = dataMatrix(r, c) * mcf;
	end
	end
	% Add dM/dt and Canister Weight Rows to Data Matrix
	intermVar1 = [];        % Define an intermediate variable
	intermVar2 = [];        % Define an intermediate variable
	for i = 1:numStage      % Loop for the number of stages
	intermVar1 = [intermVar1 (dataMatrix(2,i) /...
	dataMatrix(4,i))];    % Generate dM/dt row
	intermVar2 = [intermVar2 (dataMatrix(1,i) -...
	dataMatrix(2,i))];    % Generate canister weight row
	end
	dataMatrix = [dataMatrix; intermVar1; intermVar2];    % Refo
	%Add Ignition Time Row to Data Matrix
	intermVar1 = cumsum(dataMatrix(4,:));                  % Sum
	intermVar1 = [0 intermVar1(1:(size(intermVar1,2)-1))]; % Ign
	% Generate initial total mass
	m1 = sum(dataMatrix(1,:));                      % Stage #1 T
	m2 = sum(dataMatrix(1,2:4));                    % Stage #2 T
	m3 = sum(dataMatrix(1,3:4));                    % Stage #3 T
	m4 = dataMatrix(1,4);                           % Stage #4 T
	intermVar3 = [m1 m2 m3 m4];
	y = [dataMatrix; intermVar1; [m1 m2 m3 m4]];    % Reform Mat
	E. MAGNITUDE ( )

	function y = magnitude(x)
	% MAGNITUDE     This finds out the magnitude of the any Cart
	%   coordinate vector which is extended to point (x,y,z) fro
	%   y = sqrt(x(1)^2 + x(2)^2 + x(3)^2...+ x(n)^2);
	%
	%   This return the found magnitude
	%    Copyright (c) 2004-2005 by Kursad YILDIZ
	y = sqrt(x'*x);
	F. MOVEICBM ( )

	function [F, state, altitude, Weight, pos, V, a, g, trc, old
	moveICBM(dt, state, dataMatrix, stage, old_trc, dist)
	% MOVEICBM          This function find out the next state of
	%       given prior state, dt dataMatrix, and its stage.
	%
	% This returns new state column matrix, altitude, weight and
	% and Gravitational Acceleration, distance from the launch s
	% ground track of the ICBM
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	Re = 6.37e6;                    % Radius of the Earth (m)
	G = 6.67e-11;                   % Gravitational Constant (m^
	Me = 5.98e24;                   % Earth's Mass (kg)
	Cd = 1.25;                      % missile drag coefficient
	Area = pi* 1.30^2;              % Cross sectional area meter
	Hp = [1 0 0 0 0 0;
	0 1 0 0 0 0;
	0 0 1 0 0 0];             % The position observation matrix
	Hv = [0 0 0 1 0 0;
	0 0 0 0 1 0;
	0 0 0 0 0 1];             % Velocity observation matrix
	dMdt =  dataMatrix(5, stage);   % Fuel burn ratio
	ISP  =  dataMatrix(3, stage);   % Specific Impulse
	M    =  dataMatrix(8, stage);   % Current mass
	pos = Hp*state;                 % Current position
	V = Hv*state;                   % Current velocity
	magX =  magnitude(pos);         % Magnitude of position vect
	magV =  magnitude(V);           % Magnitude of velocity vect
	unitX = unitVector(pos);        % Position Unit vector
	unitV = unitVector(V);          % Velocity Unit vector
	altitudeOLD = magX - Re;        % Current Altitude of the mi
	g = (G * Me) / (magX ^ 2);      % Gravitational Acceleration
	% Create the transition Matrix for ICBM
	W = G * Me / magX^3;            % Weight
	Tr = dMdt * ISP * G * Me /...
	(magX^2 * magV * M);       % Trust
	ro = rho(altitudeOLD);          % Air density
	Dr = ro * G * Me * Cd * Area/...
	(2 * M * magX^2 );    % Drag
	a = (Tr-Dr)*V - pos*W;          % Acceleration
	T1 =[0       0           0           1          0           
	0       0           0           0          1           0;
	0       0           0           0          0           1;
	-W      0           0           Tr-Dr      0           0;
	0      -W           0           0          Tr-Dr       0;
	0       0          -W           0          0           Tr-Dr
	F = eye(6) + T1*dt;
	% Move the missile to next position
	state = F * state;
	altitude = magnitude(Hp*state)-Re; % Altitude of the missile
	Weight = M - dMdt * dt;            % Reduce total weight
	dataMatrix(8, stage) = Weight;     % Store the weight in dat
	pos = Hp*state;                    % Next Position
	V = Hv*state;                      % Next Velocity
	trc = unitVector(pos) * Re;        % Ground track Vector
	dist = dist + magnitude(trc - old_trc); % Range from launch 
	old_trc = trc;
	G. UNITVECTOR ( )

	function y = unitVector(R)
	% UNITVECTOR        This find out the unit vector of the Car
	%   coordinate vector R which is extended to point (x,y,z) f
	%
	%   Returns the unit vector of the given Vector
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	if magnitude(R) == 0
	y = [0;0;0];
	else
	y = R / magnitude(R);
	end
	H. RHO ( )

	function y = rho(altitude)
	% RHO       This calculate the air density for given altitud
	%       use the exponential approximation for the air densit
	%
	%       Altitude, for which we need to find the air density,
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	ro1 = 0.002378;     % Atmospheric density constant-1  (altit
	ro2 = 0.0034;       % Atmospheric density constant-1  (altit
	Kp1 = 30000;        % Atmospheric Constant-2  (altitude < 30
	Kp2 = 22000;        % Atmospheric Constant-2  (altitude > 30
	ft2m = 0.3048;      % Conversion coefficient from ft to mete
	den_con = 515.1836; % slug/ft^3  ----> kg/m^3 conversation c
	if (altitude <= 30000*ft2m)
	y = den_con * ro1*exp(-altitude/(ft2m*Kp1)); % Air density (
	else
	y = den_con * ro2*exp(-altitude/(ft2m*Kp2)); % Air density (
	end
	I. MOVEDECOYS ( )

	function [state, altitude, pos, V, trc, old_trc, dist, dist2
	moveDecoys(dt, state, pM, dist, old_trc)
	% MOVEDECOY     This function finds out the next state of De
	%       given earlier state position and dt time interval.
	%
	% This returns new state column matrix, altitude, position, 
	% track, range and missile decoys separation
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	Re = 6.37e6;                    % Radius of the Earth (m)
	G = 6.67e-11;                   % Gravitational Constant (m^
	Me = 5.98e24;                   % Earth's Mass (kg)
	Cd = 1.25;                      % Missile drag coefficient
	Area = pi* 0.5^2;               % Decoys cross sectional are
	M = 90;                         % Decoys weight (kg)
	Hp = [1 0 0 0 0 0;
	0 1 0 0 0 0;
	0 0 1 0 0 0];               % The position observation matri
	Hv = [0 0 0 1 0 0;
	0 0 0 0 1 0;
	0 0 0 0 0 1];               % velocity observation matrix
	pos = Hp*state;                 % Current position
	magX = magnitude(pos);          % Magnitude of Position
	altitudeOLD = magX - Re;        % Altitude of the missile (m
	% create the transition Matrix for ICBM
	W = G * Me / magX^3;            % Weight
	Tr = 0;       % Trust
	ro = rho(altitudeOLD);          % Air Density
	Dr = ro * G * Me * Cd * Area/...
	(2 * M * magX^2 );          % Drag
	T1 =[0       0           0           1          0           
	0       0           0           0          1           0;
	0       0           0           0          0           1;
	-W      0           0           Tr-Dr      0           0;
	0      -W           0           0          Tr-Dr       0;
	0       0          -W           0          0           Tr-Dr
	T = eye(6) + T1*dt;
	% find the new state-space of the missile
	state = T * state;
	altitude = magnitude(Hp*state)-Re; % Altitude of the missile
	pos = Hp*state;
	V = Hv*state;
	%Integrate decoy downrange
	trc = UnitVector(pos) * Re;
	dist = dist + magnitude(trc - old_trc);
	old_trc = trc;
	% Missile -decoy distance
	dist2 = magnitude(pM - pos);
	J. SCOPE ( )

	function [measurements, covariance] = Scope(isDecoys, isRedu
	% SCOPE    In multi-target multi-sensor environment, this si
	%           the radars sensing ability.
	%
	%           A stack of radar measurement and related stack o
	%           matrix, which correspond the clutter, false targ
	%           target echoes will be returned.
	%
	%           If the any of the expandable decoys is released 
	%           measurement stack will include it.
	%
	%           if the reduced RCS is used then the radar error 
	%           Because the value of the RCS do not change signi
	%           The simulation has already used the interpolatio
	%           detailed degrees. This will just use stage one R
	%           standard deviation.
	%
	%           if the jamming is on then radars returns to angl
	%           measurement.
	%
	%           isDecoys is the flag array that if the any of th
	%               decoys are released or not. Depending on the
	%               targets out there the length of the array wi
	%               any point in the array is different then “ze
	%               related index numbered target release the de
	%           isReduced is the flag that indicates the use of 
	%           isJamming is the flag that indicates the changin
	%               measurement
	%           targets is the stack that contains the current s
	%               all targets out in the sky in Cartesian coor
	%           posRF is the  Radar position in Cartesian coordi
	%
	%           See also sensePositionRF, senposition
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	global RCS1X RCS1X_R
	%% Constants
	% This assumes that all the radars use the same parameter. I
	% parameter will be changed construct a “switch” to assign t
	%       = [1          2             3           4        5  
	%       7    8   9   10        11     12                 13]
	% RdPar = [frequency, 3dB_Bandwith, Peak_Power, Gain,    Pul
	% Rcvr_Bandwith, PRF, Ni, Fr, lambda,   km,    3dB_band_in_r
	RdPar = [10e9 0.5 1000e3 104000 50e-6 20000 150 20 4 0.03 1.
	SOL = 3e8;          % Speed of light (m/s)
	kT0 = 4e-21;        % Boltzmann Constant x 290K
	RCSD = 10^(5/10);   % Decoy Radar Cross Section (5 dBsm)
	Pm = 0.001;         % Probability of miss while target exist
	Hp = [1 0 0 0 0 0;
	0 1 0 0 0 0;
	0 0 1 0 0 0];                         % Position Observation
	Hv = [0 0 0 1 0 0;
	0 0 0 0 1 0;
	0 0 0 0 0 1];                         % Velocity observation
	% Create false target/clutter for this radar
	numfalse = 5;                               % The number of 
	% clutter created by each radar
	% is assumed to be 10 per scan
	% per validation volume.
	%% Prepare for measurements
	if isReduced
	RCSindex = RCS1X_R;           % Reduced RCS look-up table
	snr = 10;
	else
	RCSindex = RCS1X;             % Normal RCS look-up table
	snr = 500;
	end
	measurements = [];                          % Empty Measurem
	covariance = [];                            % Empty covarian
	for i = 1:size(targets,2)
	%% Make the target measurements
	pos = Hp*targets(:,i);                  % Related target tru
	vel = Hv*targets(:,i);                  % Related target tru
	LOS = pos - posRF;                      % Line of Sight
	Range = magnitude(LOS);                 % Magnitude of LOS
	lookAngle = acos(dot(unitVector(LOS),...
	unitVector(vel))); % Radar Look Angle (rad)
	%Determine RCS Seen by RF Sensors
	RCS = RCSindex(round(rad2deg(lookAngle)*10) + 1);
	RCS = 10 ^ (RCS / 10);                  %Convert RCS values 
	SNR = (RdPar(3)* RdPar(4)^2*RdPar(5) *1*RCS*RdPar(10)^2)/...
	((4*pi)^3*kT0*RdPar(9)*Range^4);    % Calculate SNR
	sigmaA = RdPar(12)/(RdPar(11)*...
	sqrt(2*snr*RdPar(13)));             % Angular Error Std. Dev. (rad)
	sigmaR = (SOL*RdPar(5)/2)/(RdPar(11)*...
	sqrt(2*snr*RdPar(13)));             % Range Error Std. Dev. (m)
	% Convert LOS to the spherical coordinate
	[tt,pp,rr] = cart2sph(LOS(1),LOS(2),LOS(3));    % Convert to
	Zs = [rr;tt;pp];
	sigma = [sigmaR;sigmaA;sigmaA];                 % STD.DEV ve
	cov = diag(sigma.^2);                           % Measuremen
	% If the target use barrage jamming then switch angle only
	if isJamming
	Zs(1) = 0;                                      % No range i
	end % end for is jamming for targets
	Zsm = Zs + randn(size(sigma)).*sigma;               % Add th
	[xx,yy,zz] = sph2cart(Zsm(2), Zsm(3), Zsm(1));
	Zcm = posRF + [xx;yy;zz];                           % Conver
	err = magnitude(pos - Zcm);                         % Find e
	if rand < Pm
	Zsm = [0;0;0];                                  % Radar may 
	end
	Zsm = [Zsm; posRF];                                 % Add RF
	measurements = [measurements Zsm];                  % Add to
	covariance = [covariance cov];                      % Add to
	%%  Make the measuremnts for the False targets and clutters
	co_sigma = (1 + 1*rand(1,numfalse));    % False target can b
	% 1*sigma to 1*sigma window
	% from the target. The longer
	% distance is already gated out
	% by assumption
	for k = 1:numfalse
	sigmaF = sigma*co_sigma(k);         % Sigma for False target
	Zsm = Zs + randn(size(sigma)).*sigma;% Add the error
	Zsm = [Zsm; posRF];                 % Add RF position for ev
	measurements = [measurements Zsm];
	covariance = [covariance cov];
	end % end for false target and clutter
	%%  Take the measurement for only the decoy which is release
	if isDecoys(i)
	posD = Hp*decoys(:,i);              % Current position of de
	LOSD = posD - posRF;                % Line of Sight
	SNR = (RdPar(3)*RdPar(4)^2*RdPar(5) *1*RCSD*RdPar(10)^2)/...
	((4*pi)^3*kT0*RdPar(9)*magnitude(LOSD)^4);      % Calculate 
	sigmaAD = RdPar(12)/(RdPar(11)*...
	sqrt(2*SNR*RdPar(13)));         % Angular Error Std. Dev. (rad)
	sigmaRD = (SOL*RdPar(5)/2)/(RdPar(11)*...
	sqrt(2*SNR*RdPar(13)));         % Range Error Std. Dev. (m)
	[tt,pp,rr] = cart2sph(LOSD(1),LOSD(2),LOS(3));    % Convert 
	Zs = [rr;tt;pp];
	sigmaD = [sigmaRD;sigmaAD;sigmaAD];            % STD.DEV vec
	% Convert LOS to the spherical coordinate
	if isJamming
	Zs(1) = 0;                                     % No range in
	%             sigmaD(1) = 0;                                
	end % end for is jamming
	Zsm = Zs + randn(size(sigmaD)).*sigmaD;              % Add t
	Zsm = [Zsm; posRF];                                 % Add RF
	measurements = [measurements Zsm];                  % Add to
	covariance = [covariance cov];                      % Add to
	end % end for if isDecoys
	%%
	end    % end for outer for loop
	%% Use the same column number
	% Be sure all measurement stacks have the same number of col
	% should be 4 more measurements than number of false target/
	% for real targets, two for decoys (Not necessarily but needed to have the
	% same number columns)
	nubcol = size(targets,2)*numfalse + size(targets,2) + size(d
	add = nubcol - size(measurements,2);        % Needed extra c
	for j = 1:add
	measurements = [measurements zeros(6,1)];   % Fill with zero
	covariance = [covariance zeros(3)];         % Fill with zero
	end
	K. MASH ( )

	function [states, cov] = Mash(isJamming, PreStates, PreCov, 
	% MASH In the multi-target multi-sensor environment this sim
	%       measurements correlation, association, and Kalman fi
	%
	%       The inputs are array of measurements and covariance.
	%       the ellipsoidal gating to correlate the measurement 
	%       the resulting correlation has more than one measurem
	%       this will apply the probabilistic analyze to associa
	%
	%       The track initiation is done by the help of the IR s
	%       not simulated in the original simulator. The new tra
	%       here by “ad hoc” and test will apply if any measurem
	%       and associate with this new information.
	%
	%       isJamming is the indication of angle only measuremen
	%       PreStates is the stack of previous states of the tra
	%       PreCov is the array of previous states covariance
	%       Fs is the array of transition matrix
	%       measurements is the array of measurements that comes
	%       RF sensors
	%       covariances is the array of the measurement covarian
	%
	%       states is the array of Kalman filtered new states of
	%       inilized track
	%       cov is the array of new covariance of previously ini
	%
	%       See also fusionBox
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	warning('off');
	%% Constants
	Hm = [eye(3),zeros(3)];            % Measurement Observation
	Hrf = [zeros(3), eye(3)];          % RF Position observation
	Pd = 0.999;                        % Probability of detectio
	Pg = 0.9786;                       % Probability of target w
	m = 5;                             % Expected number of meas
	M = 3;                             % Measurement dimension
	% Gate threshold that the probability of mass Pg in side the
	gama = 9;                           % 4sigma window
	dt = 0.05;                              % Fusion box time in
	q2 = 0.001;                             % Plant Noise Coeffi
	Q = q2 * [dt^3/3   0       0      dt^2/2      0       0;
	0       dt^3/3  0       0           dt^2/2  0;
	0       0       dt^3/3  0           0       dt^2/2;
	dt^2/2  0       0       dt          0       0;
	0       dt^2/2  0       0           dt      0;
	0       0       dt^2/2  0           0       dt];
	%% Corralate, Associate, Fuse start-up
	states = [];                    % Empty states vector array
	cov = [];                       % Empty Covariance matrix Ar
	ii = 1;                         % Outer for matrix index
	iend = size(PreStates,2);       % number of target
	for i = 1:iend
	%% PREDICTION Phase For Kalman Filter
	F = Fs(1:6,ii:ii+5);        % Related Transition
	x = PreStates(:,i);         % Related state vector
	P = PreCov(1:6, ii:ii+5);   % Related covariance
	ii = ii + 6;                % Increase for next step
	x_k = F*x;                  % Predicted position
	P_k = F*P*F' + Q;           % Prediction covariance
	%% CORRELATION
	track = [];                 % Empty Track information array 
	trackP = [];                % Empty track covariance array f
	Tr = [];                    % Empty trace of track covarianc
	kk = 1;                     % Zs  matrix index
	kkk = 1;                    % Rs matrix index
	% There is 6 rows, 3 for measurement, 3 for RF position
	kend = (size(measurements,1)/6);    % Number of radars
	for k = 1:kend
	% Select stack to test
	Zs = measurements(kk:kk+5, 1:size(measurements,2));   % Rela
	Rs = covariances(kkk:kkk+2, 1:size(covariances,2));   % Rela
	LOS = Hm*x_k - Hrf*Zs(:,1);                           % LOS 
	[tt,pp,rr] = cart2sph(LOS(1), LOS(2), LOS(3));        % Pred
	h = [rr;tt;pp];
	% Measurement matrix is the gradient of the measurement func
	H = Hk(LOS);
	% Index increasing
	kk = kk + 6;                % Increase for next step
	kkk = kkk + 3;              % Increase for next step
	% Find the Measurement Matrix ('h' and 'H')for extended Kalm
	if isJamming
	h(1) = 0;               % No range observation
	H(1,1:6) = zeros(1,6);
	end % End for if isjamming
	% 'R' and 'S' is the same for within radar measurements
	R = Rs(1:3, 1:3);           % R  measurement covariance
	S = H*P_k*H' + R;           % Residual covariance
	AsoMat =[];                 % Empty correlated innovation ma
	ej = [];                    % Empty probability matrix
	Darray = [];                % Empty statistical distance arr
	CorrD = [];                 % Correlated statistical distanc
	Corrmu = [];                % Correlated innovation
	Marray = [];                % Test array
	nend = size(Zs,2);          % Number of observation to test
	for n = 1:nend
	z = Hm*Zs(:,n);         % Measurement to test
	mu = z - h;             % Residual
	D = abs(mu'*inv(S)*mu); % Statistical distance
	Darray = [Darray D];
	AsoMat = [AsoMat mu];   % Correlated innovation
	if D <= gama            % Test against window
	CorrD = [CorrD D];
	Corrmu = [Corrmu mu];
	end
	end % End for measurements loop
	if length(CorrD) > 0 % Use at most 5 data
	if length(CorrD) > 4
	Marray = Corrmu(:,1:3);
	ej = exp(-1/2*CorrD(1:3));
	else
	Marray = Corrmu;
	ej = exp(-1/2*CorrD);
	end
	else
	for n = 1:4                         % Just pick up m to use
	[D index] = min(Darray);
	ej = [ej (exp(-1/2*D))];         % Statistical distance prob
	Marray = [Marray AsoMat(:,index)];% Store the first min 5
	Darray(index) = max(Darray);     % Do not choose again
	end
	end
	%% ASSOCIATION WITH JPDA
	jend = size(Marray,2);  % Number of correlated measurement
	% Find Combined Residual weighted with own probability
	c = sum(ej);             % Normalizing Constant
	b = m*sqrt(2*pi)*(1 - Pd*Pg)/...
	(gama*pi*Pd);   % Probability miss coefficient
	Betanot = b/(b + c);     % Probability that there is no targ
	Betaj = ej./(b + c);     % Each correlation probability
	muT = [0;0;0];                 % Combined innovation
	for j = 1:jend
	muT = muT + Betaj(j)* Marray(:,j);   % Combined innovation
	end
	%% CORRECTION Phase for Kalman Filtering
	% Find the covariance increase coefficient
	sumP = 0;
	for j = 1:jend
	sumP = sumP + (Betaj(j)*Marray(:,j)*(Marray(:,j))' - muT*muT
	end
	K      = P_k*H'*inv(S);           % Filter gain
	% Update covariance
	P_c    = (eye(length(K)) - K*H)*P_k*(eye(length(K)) - K*H)' 
	% Incrase in covariance due to use of multiple measurement
	Phat   = K*sumP*K';
	P_post = Betanot*P_k + (1 - Betanot)*P_c + Phat;    % New Co
	xhat   = x_k + K*muT;
	%% Store track information
	track = [track xhat];
	trackP = [trackP P_post];
	Tr = [Tr abs(trace(P_post))];
	end % end for radar loop
	%% Fuse the track files
	c = sum(1./Tr);                    % Normalizing Constant
	st = 0;
	pp = 0;
	qq = 1;                         % Index for choosing covaria
	qend = size(track,2);           % Number of track file to fu
	for q = 1:qend
	st = st + (1/Tr(q))/c*track(:,q);
	pp = pp + (1/Tr(q))/c*trackP(1:6,qq:qq+5);
	qq = qq + 6;
	end % End for Fusion
	%% Store the results for related target
	states = [states st];
	cov = [cov pp];
	end % end for states loop
	L. HK ( )

	function H = Hk(R);
	% HK        This will find the measurement matrix for the ex
	%           filter. For this EKF, non-linearity is for the m
	%           that the sensor observe the [range;azimuth;eleva
	%
	%           The measurement function is assumed to be as z = [sqrt(x^2 +
	%           y^2 +z^2);
	%                atan2(y,x); atan2(z,sqrt(x^2 + y^2))]
	%
	%           This will return the measurement matrix
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	x = R(1);
	y = R(2);
	z = R(3);
	a1 = sqrt(x^2 + y^2 + z^2);
	a2 = sqrt(x^2 + y^2);
	H = [x/a1          y/a1            z/a1     0    0    0;
	-y/a2^2        x/a2^2          0        0    0    0;
	-z*x/(a2*a1^2)          -z*y/a2/a1^2               a2/a1^2  
	M. MOVEINTERCEPTOR ( )

	function [state, dataMatrix, pos, V, unitV, g, a, alt, M, di
	moveInterceptor(dt, state, dataMatrix, stage, GF, grd_trc_ol
	% MOVEINTERCEPTOR move forward the given ICBM INTERCEPTOR fo
	%
	%          dt is the time interval of the simulation state i
	%          state of the ICBM dataMatrix is the data for the 
	%          the stage number which the ICBM is in GF is the g
	%          that need to turn the ICBM
	%
	%          this returns state is new state vector of the ICB
	%          new data matrix that the total weight is reduced 
	%          gravitational acceleration needed for the guidanc
	%          current altitude of the ICBM
	% Copyright (c) 2004-2005 by Kursad YILDIZ
	Re      = 6.37e6;          % Radius of the Earth (m)
	G       = 6.67e-11;        % Gravitational Constant (m^3/s^2
	Me      = 5.98e24;         % Earth's Mass (kg)
	Cd      = 1.25;            % missile drag coefficient
	Area    = pi* 1.30^2;      % missile cross sectional area me
	Hp = [1 0 0 0 0 0;
	0 1 0 0 0 0;
	0 0 1 0 0 0];        % The position observation matrix
	Hv = [0 0 0 1 0 0;
	0 0 0 0 1 0;
	0 0 0 0 0 1];        % velocity observation matrix
	dmdt =  dataMatrix(5, stage);   % Fuel burn ratio
	Isp  =  dataMatrix(3, stage);   % Specific Impulse
	M    =  dataMatrix(8, stage);   % State mass
	if M <= 0       % Do not use fuel that is not in the tank
	dmdt = 0;
	end
	pos = Hp*state;                 % Current Position
	V = Hv*state;                   % Current Velocity
	magX =  magnitude(pos);         % Magnitude of position vect
	magV =  magnitude(V);           % Magnitude of velocity vect
	% Find altitute
	alt = magX - Re;                % Current altitude
	g = (G * Me) / (magX ^ 2);      % Gravitational Acceleration
	W = G * Me / magX^3;            % Weight
	Tr = dmdt * Isp * G * Me /...
	(magX^2);                   % Trust
	magGF = magnitude(GF);          % Magnitude of guidance forc
	% Compensate for Guidance Command
	% If Lateral Acceleration Requirements Exceeds Available Thr
	if (magGF >= Tr)
	magGF = Tr;                 % Apply as Much as Available
	Tr = 0;                     % Set Thrust to zero
	else % If not, compensate Thrust for the Guidance Force
	Tr = sqrt(Tr^2 - magGF^2);
	end
	Tr = Tr/(magV * M);             % Magnitude of the applicabl
	ro = rho(alt);                  % Air density
	Dr = ro * G * Me * Cd * Area /...
	(2 * M * magX^2 );          % Drag
	a = (Tr-Dr)*V -...
	pos*W;                % Acceleration
	T1 =[0       0           0           1          0           
	0       0           0           0          1           0;
	0       0           0           0          0           1;
	-W      0           0           Tr-Dr      0           0;
	0      -W           0           0          Tr-Dr       0;
	0       0          -W           0          0           Tr-Dr
	T2 = [0;0;0;GF];                % Guidance force in 6 dimens
	F = eye(6) + T1*dt;
	state = F*state + T2*dt/M;      % Next step
	pos = Hp*state;                 % Next Position
	unitX = unitVector(pos);        % Next position Unit Vector
	V = Hv*state;                   % Next Velocity
	unitV = unitVector(V);          % Next velocity Unit Vector
	M = M - dmdt * dt;              % Reduce total weight
	dataMatrix(8, stage) = M;
	alt = magnitude(pos) - Re;      % New altitude
	%Integrate missile downrange
	grd_trc = unitX * Re;           % Ground track Vector
	currDistM = grd_trc - grd_trc_old;
	dist = dist + magnitude(currDistM);
	grd_trc_old = grd_trc;          % Record previous ground tra
	N. GUIDANCE ( )

	function [distMT, VcMTTrue, oldDistTrue, Vc, oldDist, oldLOS
	magGFM, magNC1, comLatAccM, achLatAccM, LateralDiv] =...
	guidance(which, TargetX, MissileX, sensedPos, Velocity, Vc, lounchT,...
	oldDistTrue, oldDist, oldLOS, a, gICMB, Nlm, g, Weight, unit
	LateralDiv, magNC0)
	% GUIDANCE      This will calculate the guidance force and a
	%       potable values for the missile interception
	%
	%       which indicates the interception number
	%       TargetX true position of the target
	%       MiiisleX true position of the interceptor
	%       sensedPos is the estimated state of the target
	%       Velocity true velocity of the target
	%       Vc is the prior Closing velocity
	%       LounchT is the launch time of the target
	%       oldDistTrue is the true prior target ---> Intercepto
	%       oldDist is the estimated target ---> Interceptor dis
	%       oldLOS is the prior line of sight target--->Intercep
	%       a is the true acceleration of the target
	%       gICBM is the true gravitational acceleration of the 
	%       Nlm is prior achieved acceleration
	%       g is the gravitational acceleration of the intercept
	%       Weight is mass of interceptor
	%       UnitV is velocity unit vector of interceptor
	%       LateralDiv is previous lateral divert
	%       magNCO is magnitude of previous commanded accelerati
	%
	%       This returns
	%       distMT is the target---> Interceptor distance
	%       VcMTTrue is true Closing velocity
	%       oldDistTrue is the next old distance true
	%       Vc is the current Closing velocity
	%       oldDist is the next old distance
	%       oldLOS is the Next old line of sight
	%       mnvr is the target maneuver
	%       Nlm is the current achieved acceleration
	%       GFM is the current guidance force
	%       magGFM is the magnitude of the guidance force
	%       magNC1 is the magnitude of the commanded acceleratio
	%       comLatAccM is the current commanded lateral accelera
	%       achLatAccM is the current achieved acceleration magn
	%       LateralDiv is the current lateral divert of the miss
	%   Copyright (c) 2004-2005 by Kursad YILDIZ
	global timeFlags updateTime navCoefM Vcfirst SSM1 SSM2 state
	maxG TMc;
	switch which
	case 1
	time = timeFlags(1,1);
	deltaT = timeFlags(2,1);
	txF = timeFlags(3,1);
	txC = timeFlags(4,1);
	updateT = updateTime(1);
	txD = timeFlags(5,1);
	navCoef = navCoefM(1);
	stateMX =  stateM1(:,1);
	stateMY =  stateM1(:,2);
	stateMZ =  stateM1(:,3);
	AMc = SSM1(:,1:3);
	BMc = SSM1(:,4);
	CMc = SSM1(:,5)';
	DMc = SSM1(1,5);
	mG = maxG(1);
	case 2
	time = timeFlags(1,2);
	deltaT = timeFlags(2,2);
	txF = timeFlags(3,2);
	txC = timeFlags(4,2);
	updateT = updateTime(2);
	txD = timeFlags(5,2);
	navCoef = navCoefM(2);
	stateMX =  stateM2(:,1);
	stateMY =  stateM2(:,2);
	stateMZ =  stateM2(:,3);
	AMc = SSM2(:,1:3);
	BMc = SSM2(:,4);
	CMc = SSM2(:,5)';
	DMc = SSM2(1,5);
	mG = maxG(2);
	otherwise
	updateT = 0.15;
	end
	% Initial Values
	VcMTTrue = 0;
	mnvr = 0;
	GFM = [0;0;0];
	magGFM = 0;
	comLatAccM = 0;
	achLatAccM = 0;
	ncM = [0;0;0];
	magNC1 = magNC0;
	% ----------------------------------------------------------
	LOSMTTrue = TargetX - MissileX;             %True Target-Mis
	distMTTrue = magnitude(LOSMTTrue);          %True Target-Mis
	%Apply transmission delay
	receivedPosT = sensedPos + (-Velocity .* txD);
	LOSMT = receivedPosT - MissileX;    %Line of Sight (LOS) Bet
	distMT = magnitude(LOSMT);          %Target-Missile Distance
	if time > (deltaT + lounchT)
	VcMTTrue = (oldDistTrue - distMTTrue) / deltaT;             
	%Compute Control Acceleration at Only Data Update Intervals
	if txF || (txC >= updateT)
	% For the fist time of calculation we need 0 for Vc
	switch which
	case 1
	if Vcfirst(1);
	oldDist = distMT;
	Vcfirst(1) = 0; % Never set Vc 0 again
	end
	case 2
	if Vcfirst(2);
	oldDist = distMT;
	Vcfirst(2) = 0; % Never set Vc 0 again
	end
	end
	Vc = (oldDist - distMT) / updateT;                       % C
	%Compute Magnitude and Direction of Lateral Acceleration
	unitOldLOS = unitVector(oldLOS);                         % N
	unitLOSMT = unitVector(LOSMT);                           % N
	deltaLOS = unitLOSMT - unitOldLOS; % Find LOS Change Directi
	magLOSRate = magnitude(deltaLOS) / updateT;       % Magnitud
	unitncM = unitVector(deltaLOS);                   % Lateral 
	magNC1 = navCoef * magLOSRate * Vc;  % Magnitude of Lateral 
	ncM = magNC1 * unitncM;              % Lateral Acceleration 
	if time <= 90
	Vc = abs(Vc);   % Never allow before real interception
	end
	%Reset counters/flags
	switch which
	case 1
	timeFlags(3,1) = 0;
	timeFlags(4,1) = 0;
	case 2
	timeFlags(3,2) = 0;
	timeFlags(4,2) = 0;
	end
	oldDist = distMT;
	oldLOS = LOSMT;
	end %txF | (txC >= updateT)
	%Compute Target Acceleration Perpendicular to LOS (Target Ma
	magaT = magnitude(a);  % Magnitude of Target Acceleration (m
	unitaT = a / magaT; %Target Acceleration Unit Vector
	alfa = acos(dot(unitaT, -unitVector(LOSMT))); %Angle Between
	magaPLOST = magaT * sin(alfa); %Target Acceleration Componen
	mnvr = magaPLOST / gICMB; %Target Maneuver (g)
	if TMc == 0 %Control System Dynamics Implementation
	Nlm = ncM;
	else
	%Implement Control System Dynamics
	%x-axis
	nlMX = CMc * stateMX + DMc * ncM(1);
	stateMX = AMc * stateMX + BMc * ncM(1);
	%y-axis
	nlMY = CMc * stateMY + DMc * ncM(2);
	stateMY = AMc * stateMY + BMc * ncM(2);
	%z-axis
	nlMZ = CMc * stateMZ + DMc * ncM(3);
	stateMZ = AMc * stateMZ + BMc * ncM(3);
	switch which
	case 1
	stateM1 = [stateMX, stateMY, stateMZ];
	case 2
	stateM2 = [stateMX, stateMY, stateMZ];
	end
	Nlm = [nlMX; nlMY; nlMZ];  %Achieved lateral acceleration ve
	if Nlm == [0;0;0]
	Nlm = ncM;
	end
	end %TMc == 0 (Control System Dynamics Implementation)
	% Guidance Force
	magnlM = magnitude(Nlm);               %Magnitude of achieve
	comLatAccM = magNC1 / g;               %Commanded Lateral Ac
	achLatAccM = magnlM / g;               % Achieved Lateral Ac
	if achLatAccM >= mG
	achLatAccM = mG;
	magnlM = mG*g;
	Nlm = magnlM*unitVector(Nlm);
	end
	LateralDiv = LateralDiv + abs(magnlM * deltaT);   %Lateral D
	%Compute Lateral Acceleration Perpendicular to Velocity Vect
	nlPerM = Nlm - unitV * magnlM * cos(acos(dot(unitVector(Nlm)
	GFM = nlPerM * Weight;                    % Guidance Force (
	magGFM= magnitude(GFM); %Magnitude of guidance force
	end
	oldDistTrue = distMTTrue; %Record old Missile-target distanc
	APPENDIX C. READ-ME
	This appendix contains the “read-me file” of the MATLAB® cod
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